dc.contributor.author | Castano, R. | en_US |
dc.contributor.author | Judd, M. | en_US |
dc.contributor.author | Estlin, T. | en_US |
dc.contributor.author | Anderson, R. C. | en_US |
dc.contributor.author | Scharenbroich, L. | en_US |
dc.contributor.author | Song, L. | en_US |
dc.contributor.author | Gaines, D. | en_US |
dc.contributor.author | Fisher, F. | en_US |
dc.contributor.author | Mazzoni, D. | en_US |
dc.contributor.author | Castano, A. | en_US |
dc.date.accessioned | 2004-09-16T23:56:11Z | |
dc.date.available | 2004-09-16T23:56:11Z | |
dc.date.issued | 2004-03-06 | en_US |
dc.identifier.citation | IEEE Aerospace 2004 | en_US |
dc.identifier.citation | Big Sky, MT, USA | en_US |
dc.identifier.clearanceno | 03-2863 | en_US |
dc.identifier.uri | http://hdl.handle.net/2014/7968 | |
dc.description.abstract | This paper provides a brief overview of the entire OASIS system and how it analyzes one type of data - grayscale images taken by the rover for engineering and hazard avoidance purposes. | en_US |
dc.format.extent | 3250897 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en_US | |
dc.subject.other | OASIS machine learning onboard science | en_US |
dc.title | Autonomous onboard traverse science system | en_US |