JPL Technical Report Server

Validation of the radiometric stability of the atmospheric infrared sounder

Show simple item record Aumann, H. H. Elliott, D. Strow, L. L. 2015-03-04T00:05:01Z 2015-03-04T00:05:01Z 2012-08-12
dc.identifier.citation SPIE Optics and Photonics, San Diego, California, August 12-16, 2012 en_US
dc.identifier.clearanceno 12-3148
dc.description.abstract It has been widely accepted that an infrared sounder in low polar orbit is capable of producing climate quality data, if the spectral brightness temperatures have instrumental trends of less than 10 mK/yr. Achieving measurement stability at this level is not only very demanding of the design of the instrument, it is also pushes the state of art of measuring on orbit what stability is actually achieved. We discuss this using Atmospheric Infrared Sounder (AIRS) L1B data collected between 2002 and 2011. We compare the L1B brightness temperature observed in cloud filtered night tropical ocean spectra (obs) to the brightness temperature calculated based on the known surface emissivity, temperature and water vapor profiles from the ECMWF ReAnalysis (ERA) and the growth rates of CO₂ , N₂O and Ozone. The trend in (obs-calc) is a powerful tool for the evaluation of the stability of the 2378 AIRS channels. We divided the channels into seven classes: All channels which sound in the stratosphere (at pressure levels below 150 hPa), 14 um CO₂ sounding, 4 um CO₂ P-branch sounding, 4um CO₂ R-branch sounding, water vapor sounding, shortwave surface sounding and longwave surface sounding. The peak in the weighting function at 1050 hPa separates sounding and surface channels. The boundary between shortwave and longwave is 5 μm. Except for the stratosphere sounding channels, the remaining six groups have (obs-calc) trends of less than 20 mK/yr. The longwave surface channels have trends of 2 mK/yr, significantly less than the 8 mK/yr trend seem in the shortwave window channels. Based on the design of the instrument, trends within a group of channels should be the same. While the longwave and shortwave trends are less than the canonical 10 mK/yr, the larger trend in the shortwave channels could be an artifact of using the pre-launch determined calibration coefficients. This is currently under evaluation. The trend in (obs-calc) for the non-surface sounding channels, in particular for stratosphere sounding and upper tropospheric water channels, is dominated by artifacts created in calc, most likely due to changes in the ERA Ozone and water vapor. Based on this argument the best estimate of the trend for the channels within a channel group is given by the surface sensitive channels within the group. Based on this consideration we estimated the trend of all AIRS longwave channels as 2 mK/yr, while the shortwave channels have a trend of 8 mK/yr. en_US
dc.description.sponsorship NASA/JPL en_US
dc.language.iso en_US en_US
dc.publisher Pasadena, CA : Jet Propulsion Laboratory, National Aeronautics and Space Administration, 2012 en_US
dc.subject Climate en_US
dc.subject CO2 en_US
dc.subject N2O en_US
dc.subject Calibration en_US
dc.subject hyper-spectral en_US
dc.title Validation of the radiometric stability of the atmospheric infrared sounder en_US
dc.type Preprint en_US

Files in this item

This item appears in the following Collection(s)

Show simple item record



My Account