Keywords:Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS); antenna; deployment; dynamic; modeling; lenticular; hinge; ADAMS; Dynamic Analysis and Design Systems (DADS); Mars
Publisher:Pasadena, CA : Jet Propulsion Laboratory, National Aeronautics and Space Administration, 2006.
Citation:SPIE Defense & Security Symposium, Orlando, Florida, April 17-21, 2006.
Abstract:
The MARSIS antenna booms are constructed using lenticular hinges between straight boom segments in a novel design which allows the booms to be extremely lightweight while retaining a high stiffness and well defined structural properties once they are deployed. Lenticular hinges are elegant in form but are complicated to model as they deploy dynamically and require highly specialized nonlinear techniques founded on carefully measured mechanical properties. Results from component level testing were incorporated into a highly specialized ADAMS model which employed an automated damping algorithm to account for the discontinuous boom lengths formed during the deployment. Additional models with more limited capabilities were also developed in both DADS and ABAQUS to verify the ADAMS model computations and to help better define the numerical behavior of the models at the component and system levels. A careful comparison is made between the ADAMS and DADS models in a series of progressive steps in order to verify their numerical results. Different trade studies considered in the model development are outlined to demonstrate a suitable level of model fidelity. Some model sensitivities to various parameters are explored using subscale and full system models. Finally, some full system DADS models are exercised to illustrate the limitations of traditional modeling techniques for variable geometry systems which were overcome in the ADAMS model.