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Abstract 

We introduce a general type of optimization algorithm that infers 
data models relating two or more disjunct feature spaces, 
representing different aspects of a set of objects. The associated 
inference problem is solved by formulating a novel objective 
function, generalizing mixture model clustering to heterarchical 
classification. For the optimization of this objective function we 
use a clocked objective function update scheme. As a concrete 
example we apply the clustering algorithm to geological data 
(rocks) to infer the spatial as well as mineral relationships within a 
field geology model. We test the algorithm with synthetic data 
generated according to a particularly chosen probability 
distribution function. 

I’ 
1 Introduction 
Clustering algorithms are dependent on the presence of features that distinguish among 
the data. These features can be mathematically represented as feature vectors. Clustering 
of feature vectors can be done in a variety of ways such as K-means [Duda, Hart, and 
Stork, 20001, EM for mixture models [Bishop, 19951, and hierarchical clustering 
algorithms [Williams, 20001. Common to these algorithms is the fact that all features are 
treated equivalently in the joint feature space. 

In this work we present a clustering method that allows operation on qualitatively 
disjunct feature spaces simultaneously and in a unified way [Fink, Castaiio, Davies, and 
Mjolsness, 200 I]. In particular we introduce a heterarchical clustering algorithm for 
mutually constraining heterogeneous features, applicable to a variety of classification 
problems. Without loss of generality we consider the case of feature vectors consisting of 
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two heterogeneous feature domains. We will show that this class of “mixed” feature 
vectors can be successfully clustered by our method where standard clustering 
algorithms, represented by EM for mixture models, fail. 

In Section 2 we explain the underlying theory of our clustering algorithm by giving an 
example application. We derive the appropriate constrained optimization problem for 
inferring, in this case, geological relationships from observed data (about rocks) in the 
form of an objective function, and define the optimization procedure using a clocked 
objective function update scheme. In Section 3 we show the results of numerical 
simulations for the example application. We end with conclusions and a discussion about 
future work in Section 4. 

2 Theory 
The first step of our clustering method is to formulate an objective function which is to be 
optimized, describing mathematically the clustering problem. In order to optimize the 
objective function the derivatives with respect to each optimization variable are 
calculated. In our case clocked objective functions [Gold, Rangarajan, and Mjolsness, 
19961 and Soft-assign techniques [Rangarajan, Gold, and Mjolsness, 1996; Rangarajan, 
Yuille, Gold, and Mjolsness, 1997; Rangarajan, Yuille, and Mjolsness, 19991 are 
employed for the optimization of the objective function. We will illustrate our algorithm 
by giving an example drawn from geological planetary surface exploration [Mjolsness, 
Davies, Castafio, Lou, and Fink, 20001. 

2.1 Rock-Patch-Facies-Deposit  Model 
In our current study we look at selected geological processes in a Martian environment. 
Starting from what a rover can actually observe, we deploy a geological model of how 
rocks are dispersed from a few sources into many separate locations. Rocks from the 
same source (e.g., impact crater ejecta, volcanic deposition, flood channels) form 
deposits. The rocks within each deposit are spatially clustered into patches. In addition to 
belonging to a patch, each rock also belongs to a class based on its mineral composition 
and morphology, called a facies. A deposit contains one or more facies. Each patch 
within a deposit contains the same ratio of rocks from the facies represented in the 
deposit, e.g., 70% of facies A and 30% of facies B. These relationships between deposits, 
patches, facies, and individual rocks are summarized in the rock-patch-facies-deposit 
model (RF’FD model), depicted in Figure 1. We stress that this model is a generalized 
form of classification, relating the distribution of individual clasts to each other to derive 
the compositional (facies) and spatial (patches) relationship within the deposits under 
investigation. A classification result can then be compared to other geologic distributions 
at other locations on Mars or elsewhere. 

The distribution of patch locations in a deposit, rock locations in a patch, and mineral 
composition vectors within a facies are all taken to be Gaussian here for simplicity. 
Based on this scenario, an objective function can be derived (see 2.2). Observable 
parameters such as rock location, shape, clast size, and spectra can be used to invert the 
model, estimating the extent and composition of surface deposits and identifying the 
corresponding geological formation processes (fluvial, impact, volcanic, aeolian). 



Patches 

Fig. la: RPFD model, describing the relationships between deposits, patches (location), facies 
(mineral composition and morphology), and individual rocks (location + mineral composition and 
morphology). Single-headed arrows represent one-to-many relationships, while the double-headed 
arrow represents a many-to-many relationship. In the center of the figure two deposits are depicted 
the first deposit consists of a single patch containing one facies, while the second deposit consists 
of two patches, containing three facies. Compare this heterarchical clustering to simple 
hierarchical clustering in Fig. lb. 
2.2 Objective Function 

From the above described geological model we derive an appropriate constrained 
objective function for inferring geological relationships from observed data (in this 
case rocks). The function to be optimized is: 

subject to the following constraints: 

where F :  membership matrix of facies 1 in deposit a (the key many-to-many 
relationship which expresses the “intertwining” of mineral and spatial information); 
P : membership matrix of patch b in deposit a; R : membership matrix of rock i in 
patch b; Q : membership matrix of rock i in facies 1; ya : spatial location of center 
of deposit a; wb : location of center of patch b; cf, : composition vector for facies 1; 

xi: observed spatial location of rock i; ci: observed composition of rock i; 
p,,...,p5 : rewardlpenalty weights. 

These constraints are enforced by adding the following entropy (-Ts) and 
Lagrangian-multiplier (&,vi, yi ) terms to the objective function: 



The overall objective function E is the sum of the partial objective functions: 

E = El + E ,  + E3.  
An essential difference between our algorithm over, e.g., EM for mixtures of Gaussians, 
is the fourth-order PRQF term i n E  1 which allows information from the mineral 
clustering (facies) and the two-level spatial clustering subproblems (patches and deposits) 
to interact and mutually constrain one another. 

2.3 

To perform the constrained optimization we use deterministic annealing with 
clocked objective functions and Soft-assign, converging to a fixed point as shown in 
the following pseudo-algorithmic excerpt: 
T = T-max; 
energy = EvalEnergy(parameters,T) ; 
while ( T > T-min ) 
I 

Clustering Algorithm and Optimization Process 

// deterministic annealing loop 

UpdateDepositMeans(parameters) ; I/ y-a 
UpdatePatchMeans(parameters) ; I/ psi-b 
UpdateFaciesMeans(parameters) ; // cf-1 
UpdateDepositPatchMemberships(parameters,T); // P 
UpdatePatchRockMemberships(parameters,T); // R 
UpdateFaciesRockMemberships(parameters,T); I/ Q 
UpdateDepositFaciesMemberships(parameters,T); /I F 
T = T * T-rate; 
energy = EvalEnergy(parameters,T); 

// anneal temperature T 

1 
The necessary update equations for the clustering algorithm are derived in a 
straightforward calculation not presented here by setting the partial derivatives of 
the objective function E with respect to each variable equal to 0: 

3 Results 

To demonstrate the algorithm we show an example using three deposits, nine 
patches, and three six-dimensional facies. 



3.1 
The rocks together with their respective facies, the patch centers, the facies centers, and 
the deposit centers are generated from l-D Gaussian distributions for each dimension 
(two dimension for x- and y-spatial coordinates, six dimensions for facies). The variances 
we used are as follows: deposit-center-variances = 10.0, patch-center-variances = 3.0, 
facies-center-variances = 10.0, rock-location-variances = 0.3, and rock-facies-variances = 
1 .o. 

Generation of Synthetic Data Sets 

3.2 Simulation Results 

Figures 2 and 3 show the simulation results for an example synthetic data set 
generated using the above variances. In Figure 2a the results of the RPFD-algorithm 
group the data into the same deposit and patch clusters as the source data labels. 
Figure 3a shows the clustering results in the mineral domain, where the facies are 
correctly labeled. The EM algorithm clusters only in the joint spatial and mineral 
feature space, thus leading to an incorrect clustering result as depicted in Figures 2b 
and 3b for the spatial and mineral domains, respectively. 

4 Discussion 

We have introduced a clustering method using clocked objective functions and Soft- 
assign techniques to optimize an appropriately formulated objective function, that 
allows heterarchical clustering in mutually constraining but disjunct feature spaces. 
In our study the disjunct features are spatial and mineral features with which the 
relationships within a geological rock-patch-facies-deposit model are inferred. We 
demonstrated the algorithm using synthetic data generated according to the rock- 
patch-facies-deposit data model. We further showed that standard clustering 
algorithms such as EM fail to cluster correctly in the joint feature space. 

Since the optimal choice of the rewardpenalty weights fi,...,p5 must be 
determined we used a simulated annealing based algorithm to obtain an optimized 
set of weights. As criteria for the quality of the weight set we employed two 
measures: (1) we calculated the normalized sum of the smallest Euclidian 
differences between the original and the nearest calculated deposit means, patch 
means, and facies means; (2) we computed a confusion matrix for each type of label 
(deposit, patch, and facies) and determined the best assignment of original class 
labels to estimated classes obtained with our algorithm. The score for each label 
type is given by the percentage of correct rocks. 

Since we report on preliminary simulation results, future work would look at the 
scalability of our method, e.g., increased number of deposits, patches, facies, and 
rocks and would also examine its performance under more complicated 
circumstances, such as one deposit being completely embedded in another. In the 
absence of ground truth information (e.g., knowing the generating means and 
variances of the involved distributions) cross-validation could be used to determine 
the optimal rewardlpenalty weights [Smyth, 19961. 
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Figure 2. a) calculated RPFD-clusters - spatial domain - corresponding with source data labels; b) calculated EM- 
clusters - spatial domain - incorrectly clustering source data labels. 
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Figure 3. a) calculated RPFD-clusters - mineral domain - corresponding with source data labels; b) calculated 
EM-clusters - mineral domain - incorrectly clustering source data labels. The first two dimensions of the six- 
dimensional facies feature vectors are plotted. 



At a deeper analytical level, that is, for scientific interpretation of the observed (and 
now classified) facies, mathematical models of physical/geological processes can be 
used to invert the distribution of materials to create the original (pre-process) 
distribution and quantify the strength of the process itself. Illustrative examples 
may be the reconstruction of flood events and the mapping of the ejecta around a 
simple impact crater. The rock-patch-facies-deposit model allows the different 
concentrations and ejecta sizes to be put into classes, and the resulting distributions, 
both mineralogical and physical (e.g., distribution of clast sizes and degree of 
shock), can be used within a model of crater formation and ejecta emplacement to 
determine original stratigraphy and mineralogy. 
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