
Automated Testing
of the Deep Space Network’s

Uplink Subsystem

Will Duquette
Jet Propulsion Laboratory

William.H.Duquette@ id.nasa.gov

Abstract:

This paper describes some of the lessons we learned in implementing two diflerent Tcl-
based test frameworks used to automate testing of the Deep Space Network’s new Uplink
Subsystem, and discusses the advantages and disadvantages of each. The first framework
was external to the Uplink Subsystem’s software and provided complete control of the
environment; the second was integrated with the software and provided less control, but
motivated more and better testing. Some implementation details of the second framework
are discussed as well.

1. Background

1.1 The Deep Space Network

The Deep Space Network (DSN) is NASA’s primary ground system for spacecraft
telecommunications. A world-wide network of antennas and related hardware and software, it
consists primarily of an operations center at the Jet Propulsion Laboratory (JPL), three Deep
Space Communications Complexes (DSCC’s) in California, Spain, and Australia, and the voice
and data networks which connect them. The DSN is primarily used for tracking NASA
spacecraft, but also supports the European Space Agency (ESA) and others.

1.2 Spacecraft Tracking

Each DSN complex operates a number of dish antennas and related “subsystems”. Each
subsystem is a collection of hardware and software which supports one element of a successful
track. The antenna pointing subsystem, for example, is responsible for keeping the antenna
pointed at the spacecraft; the telemetry subsystem is responsible for decoding the spacecraft’s
downlink signal and forwarding the telemetry data to JPL. Some of these subsystems are
associated with a particular antenna; others can be assigned to work with any antenna.
Overseeing everything is a DSN operator sitting at a Monitor and Control (M&C) workstation.

First, an antenna and all necessary subsystems are “assigned” to track a specific spacecraft, and
given over to a particular DSN operator. The operator must then configure and calibrate the
subsystems to support the track. During the track itself, the operator monitors the assigned
subsystems for hardware failures and other problems, and occasionally takes other steps, such as

1

http://id.nasa.gov

enabling the modulation of command data onto the carrier signal for uplink to the spacecraft. At
the end of the track, the subsystems are unconfigured and returned to the pool for assignment.

1.3 The Monitor and Control Protocol

All communication between the operator and the subsystems is via the Monitor and Control
Protocol. This protocol is implemented by a multi-threaded, socket-based API, and carries five
basic kinds of message:

“Configuration Control Notices” are sent by M&C to the subsystems to assign them to support a
track, and later to unassign them again.

“Event Notices” are sent by subsystems to M&C to notify the operator of progress made or of
problems observed. There are a number of kinds of event notice, each with a specific purpose
and level of severity, but fundamentally each is a text message intended to be read by the
operator.

“Operator Directives’’ are requests for action sent by M&C to the subsystems. “Commands”
would be the more normal term, but in this domain the word “command” is exclusively used to
mean “data sent to a spacecraft.” An operator directive is a text string consisting of the directive
name and zero or more arguments. Operators have historically typed directives in by hand.

“Directive Responses’’ are sent by subsystems to M&C in response to operator directives. There
are several categories of response, ranging from REJECTED to PROCESSING to
COMPLETED. Colloquially, a directive is said to be accepted if the subsystem attempts to carry
it out, and rejected otherwise. Each response includes a text message intended to be read by the
operator.

“Monitor Data Segments” convey detailed configuration, status, and performance information.
Each segment consists of one or more “monitor data items”. Each item is named, and may be a
text string, an integer, a floating point number, or one of several DSN-specific enumerated types.
The subsystems assigned to a track use monitor data segments to communicate amongst
themselves and with M&C; monitor data is also used to populate GUI displays on the M&C
workstation. Monitor data is “published” by the subsystem, and may be “subscribed” to by any
interested party.

All of these messages are either ASCII text or are easily converted to and from ASCII text;
hence scripted control of a subsystem is a natural thing to do. The wrinkles are due to the
asynchronous nature of the interface, and to the multi-threaded nature of the M&C API.

1.4 The Uplink Consolidation Task

Our project began in late 1997 as the “Command Replacement Task”. The DSN command
subsystem receives spacecraft command data blocks from the spacecraft’s flight team, queues
them up, and ultimately modulates them onto a subcarrier signal. Our job was to design and

2

build a new command subsystem on modem hardware; the new subsystem was to be called the
"Command Control Processor", or "CCP".

Over the years a body of reusable subsystem software had accumulated to support the building of
subsystems, but as we were starting the DSN was just beginning to move to a new
implementation of the M&C protocol described above. The new implementation was radically
different from the old. As part of our job was to build the subsystem to the new standard, we
were able to start from scratch and build a new subsystem infrastructure on top of the new M&C
protocol.

After we'd released version 1 .x of our new Command subsystem, and while we were working on
version 2.x, our scope was expanded, and the task was renamed "Uplink Consolidation". In
version 3.x, our software was to provide a consolidated monitor and control interface for the
DSN Command, Exciterflransmitter, and Ranging functions under the name of the "Uplink
Subsystem", or "UPL". The Ranging function is used to measure the round-trip light time to the
spacecraft, and works by generating a sequence of ranging tones which are turned around by the
spacecraft and detected by the downlink ranging hardware. The Exciterflransmitter function
produces a carrier signal, modulates the Ranging and Command signals on to it, and steps it up
to the required output power before passing it along to the antenna.

At the time of writing, we have finished the implementation phase for the first consolidated
version, 3.x, and are preparing it for acceptance testing.

1.5 DSN Testing

Delivering a subsystem to the DSN involves four levels of testing:

0

0

0

Unit testing by the individual developers
Integration testing by the subsystem's test team
Acceptance testing by DSN complex personnel, with help from the subsystem's test team
Operational "soak" testing. This is a probationary period in which the subsystem is used
for real operations, but is under close scrutiny.

Ideally, any automated test solution would apply broadly, allowing automation of both developer
unit tests and the official test plans used for acceptance testing.

My responsibility on the Command ReplacemenWplink Consolidation task was the interface
with the Monitor & Control subsystem, i.e., the code which received and responded to CCN's
and operator directives, and which sent event notices and published monitor data. I soon realized
that a suite of automated regression tests could save a great deal of time.

Because we were developing a new subsystem infrastructure as part of our overall effort, we
produced a lot of library code, mostly written in C. Writing test programs for these libraries was
generally quite straightforward. The difficulty lay in automating the testing of the subsystem
software as a whole.

3

2. External Testing

2.1 The Monitor & Control Shell

Prior to this task, I was part of the M&C subsystem team, responsible for developing GUI
infrastructure. This involved using tempermental early versions of the new M&C protocol and
API. To add in troubleshooting, debugging, and testing I wanted to create an interactive shell
which gave access to the M&C API. The extensible scripting languages then available to me
were Perl, Tcl, and Python. Perl I rejected out of hand as it doesn't provide an interactive shell.
At that time (1995) Tcl was more widely known than Python, and Tcl's command syntax
provided a more pleasing shell interface, so I selected Tcl, and created an application called
monsh, the Monitor and Control Shell. When I left the M&C team to work on the Command
Replacement task, I took monsh with me.

A digression: because of its interactive nature, monsh has remained my preferred tool for
troubleshooting M&C communications problems; the effort spent developing and maintaining it
has been worthwhile for this reason alone.

2.2 Monsh Implementation

For the most part, monsh is a straight-forward Tcl extension which wraps the calls in the M&C
API and adapts them to Tcl style. The only interesting implementation detail is monsh's
handling of the M&C API's callback functions.

Rather than using an event loop, the M&C API is multi-threaded, using POSIX threads. The
client registers callback functions with the API; when incoming messages arrive, the appropriate
callback is called in its own thread. Consequently, it was necessary to multiplex these messages
into the Tcl event loop for processing, as follows: when each message arrives, its data is copied
into a new dynamically-allocated packet, and a pointer to the packet is written to a Unix pipe.
The other end of the pipe is registered with a Tcl input file handler which reads the packet from
the pipe, unpacks the data, and calls the user's Tcl callback code. This is all done in C.

Monsh can run as a GUI (tkmonsh), in which case the event loop is always available; in a typical
test scenario it is more usual for a monsh script to send operator directives to the subsystem and
enter the event loop just long enough to receive the response. Monsh provides the commands
mon-event-loop and mon-end-loop to enter and exit the event loop as needed.

2.2 NaYve Test Scripting: The CcpTest Package

My first effort at scripted testing for Uplink was in support of my work on version 1 .x of the
subsystem, the "Command Control Processor", or CCP.

The initial goal was to support exhaustive testing of the subsystem software, i.e., all nominal
scenarios plus all failure scenarios resulting in 100% code coverage. Consequently, test scripts
needed to be able to do the following things:

4

Configure the subsystem's initialization files and local directory space before invoking
the subsystem.
Invoke the subsystem software as needed.
Simulate the M&C Subsystem, including the sending of Configuration Change Notices
(CCNs).
Send operator directives and verify the category and text of the responses.
Verify event notices and monitor data values.
Scan and verify entries in the subsystem's debugging log.
Simulate communication with other subsystems, as needed, notably M&C and
Exci termransmi tter .
Terminate the subsystem software as needed.

In my initial implementation, the test software consisted of two layers on top of monsh. The first
was a package called MonTest which implemented a generic M&C test harness based on taking
action and then waiting in the event loop for a response. Given a list of monitor data item names
and values, for example, the monVerify command verified that each item's published value was
as specified, retrying periodically, if necessary, until the values were correct or a set timeout
expired. Similarly, the command sendDir sent an operator directive to the program being tested;
expectResp waited for the response, which had to match a specified pattern. Scripts written
using MonTest don't provide a GUI; instead, individual MonTest commands enter and leave the
event loop as necessary. MonTest is still used today to test some of our low-level library code.

The second layer was an ad hoc collection of code specific to our subsystem; it simulated the
M&C and Excitermransmitter subsystems, configured the CCP's initialization files, invoked the
subsystem before each test and terminated it afterwards, and in general provided a convenience
layer on top of MonTest. This package was called CcpTest.

We'd discovered that it could be dangerous for multi-threaded programs to fork-and-exec other
tasks (under POSM Threads, at any rate). However, it was much safer if any forking was done
prior to creating any new threads, and so CcpTest used a two-level approach, as follows:

Each CcpTest script ran as a separate invocation of the monsh interpreter.
First, the script set up the subsystem's environment as desired.
Next, it invoked the subsystem software.
Next, it wrote the body of the test to a temporary file, and invoked monsh to execute it.
The child script performed a series of tests, logging all activity and results to standard
output.
When the child script terminated, the parent script captured the output and scanned it for
failures.
The parent script then wrote the complete log and the results to standard output.

I wrote several dozen detailed test scripts using this approach. Over time, a number of
disadvantages became evident:

5

Because the test scripts controlled the subsystem environment, they were remarkably
fragile. These were early days, and the contents of the subsystem initialization files were
updated regularly, as were many other things. Consequently, the test scripts were
frequently broken by changes having nothing to do with what they were testing, and
required frequent updating. Human nature being what it is, this meant that they didn’t get
run very often.

Each test script contained ten to fifteen lines of boilerplate code that were almost (though
not quite) the same for each script.

Those ten to fifteen lines were both necessary and obscure.

Those developers I tried to interest in using CcpTest for their own unit testing were put
off by the steep learning curve. None of them were Tcl programmers, nor did most of
them need to test the ins and outs of subsystem invocation and failure as I did. Our lead
tester was interested, but writing scripts was sufficiently difficult and his time sufficiently
constrained that nothing happened.

2.4 Better Test Scripting: The ccp-test Tool

About halfway through the development of version 1 .x I tried a slightly different approach in an
attempt to resolve some of these problems. The result was both easier to use and less flexible;
where CcpTest was capable of invoking and testing any desired program, the new approach was
focussed on testing the CCP subsystem software only.

First, the collection of ad hoc code loosely named CcpTest was extensively revised, refactored,
and redesigned for clarity and consistency. Second, a tool called ccp-test was written to
encapsulate all of the ugly details of getting a test script up and running. The input to ccp-test
was a Tcl file that defined a series of independent test cases. Ccp-test was responsible for
invoking the subsystem software as needed, and for executing each test case, in sequence or in
random order, once or repeatedly. It was a great improvement, doing away with most of the ugly
boilerplate and easing the learning curve somewhat. It didn’t solve the most serious problem, the
fragility of test scripts. Nevertheless, ccp-test was used by our lead tester to do operator
directive syntax checking as part of normal integration testing. It was never used for acceptance
testing.

As before the result of the fragility of the test scripts was that I didn’t run them all that often so
that I wouldn’t have to update them all that often. Moreover, I never completely finished porting
my old scripts over to the new framework.

2.5 Subsystem Evolution

When version 1 .x of the subsystem software was complete, we began development of version
2.x. It was at about this time that we were tasked to do Uplink Consolidation in our version 3.x,
and as most of the 2.x changes didn’t involve me I spent most of my time working on new

6

infrastructure to support our vastly expanded set of requirements for 3.x. Some of this
infrastructure went into the 2.x version to make it more robust and to save time later on, and the
related architectural changes broke ccp-test ’s handling of subsystem invocation and termination.
The code tested by my existing test scripts remained largely unchanged, however, and being
busy with other things I allowed ccp-test to remain broken until late in the development cycle.

Then version 3.x development began in earnest, and the architectural changes broke ccp-test
again. One simulated subsystem no longer needed to be simulated; and as the subsystem became
much larger and more complex, the fragility problem became correspondingly more difficult. I
made several abortive efforts to update ccp-test for version 3.x, but motivation was lacking.
While ccp-test added value, it was unwieldy and much of that value was eaten up by the constant
rework.

And then the death knell rang. Ccp-test used an M&C subsystem simulation to test the
subsystem’s reaction to configuration change notices. At about this time, a policy change came
down that indirectly (but effectively) banned the use of such simulators on the main LAN at a
DSN complex. As designed, ccp-test could never be used for acceptance testing.

3. Internal Testing

I’ve referred to my previous efforts at scripted testing of our subsystem software as “external
testing” because the test software was completely independent of the subsystem software itself.
For several reasons, I decided to try a completely different approach:

Control of the subsystem initialization files can be useful for unit testing, but isn’t
required for integration or acceptance testing: the initialization files and environment
must be set correctly at subsystem installation and shouldn’t be changed thereafter.

Control of subsystem invocation and termination is useful for testing certain specific
failure modes, but isn’t required for the vast bulk of conceivable test cases.

0 A scripting mechanism that could assume that the subsystem software was successfully
configured and invoked would be freed from the fragility problem. Environmental
changes required by software changes would have to be resolved before the scripting
mechanism was even available, thus removing this concern from the individual scripts.

An internal scripting facility could run as part of the subsystem software. Consequently, it
would not be able to control subsystem initialization or invocation.. .but at the same time it
would be always available whenever the subsystem software was running, and would be
controlled using the same interface as the rest of the subsystem software. The moral was clear-
by relaxing my two most stringent requirements, I should see an increase in usability and
stability.

3.1 The Legacy AutoTester

7

The infrastructure used with the previous version of the M&C API had included a scripting
facility, the “AutoTester”, with which scripts residing on the subsystem’s disk drive could be
invoked and controlled somewhat interactively via operator directives. In at least one case, the
AutoTester had been used to automate the bulk of a subsystem acceptance test. This was a
model worth examining.

It soon became clear that simply porting the AutoTester to our platform was out of the question.

0 It was closely tied with the obsolete subsystem infrastructure, and made a number of
assumptions (such as the use of shared memory for storing monitor data items) that were
invalid for our architecture.

0 Many of these assumptions were evident in the scripting language itself.

Moreover, its scripting language was the typical result of trying to write an ad hoc
extension language that’s as easy as possible to parse and execute line-by-line, with ugly
control structures bolted on afterwards. Now that many worthwhile extension languages
are available, it looked especially bad.

However, the AutoTester’s command set and operator directive interface had proven themselves
useful for subsystem testing and automation, and were clearly worth emulating in a better
language.

At this point in our development, our project was using two scripting languages: Per1 and Tcl.
Of the two, only Tcl was designed from the ground up for embeddability; moreover, thanks to
monsh, we had experience with Tcl’s C API. So it was an easy decision to base the new facility
on Tcl.

3.2 Uplink Software Architecture

The Consolidated Uplink Subsystem consists of a Solaris workstation called the Uplink
Processor Assembly (UPA) and a number of hardware boxes. In this paper, the term “Uplink
Software” refers only to the software that runs on the UPA.

The Uplink Software is a distributed application consisting of a number of application programs,
or “tasks” built on top of our new subsystem infrastructure, the Uplink Common Software.
Generally speaking, each task is responsible either for managing one external interface, or for
coordinating the work of other tasks. The tasks communicate among themselves by means of
messages sent across Unix-domain sockets. Internally, the execution of each task is controlled
by a select()-based event loop similar to Tcl’s own.

3.3 The Uplink Scripting Engine “ , . -.

The internal scripting facility could be built into an existing task, or implemented as a new task.
We chose to write a new task, the Uplink Scripting Engine, for these reasons:

8

0 Code Independence. Because the Scripting Engine was to be used to test the Uplink
subsystem’s software, it should, so far as was possible, rely only on independently-tested
infrastructure code and not on subsystem application code.

Realistic Testing. The main function of the Scripting Engine is to exercise the Uplink
Software by means of M&C messages, especially operator directives and responses. For
end-to-end testing, these messages should come from outside the task that handles them,
and should be handled identically to messages coming from outside the subsystem.

Failure Recovery. Because the Scripting Engine is primarily a test tool, fatal errors in the
Scripting Engine should not be allowed to affect the operation of the remainder of the
Uplink Software. Being a separate task, the Scripting Engine can be brought up and
down without hazard.

4. Scripting Engine Implementation

The following sections will discuss the features and implementation of the Uplink Scripting
Engine.

4.1 Operator Control

Scripting is controlled by the ACTL operator directive. The acronym “ACTL” stands for
something like “Automation ConTrolL”; it was chosen for consistency with the legacy
AutoTester.

ACTL <scriptname> [<arg> [<arg>.. .]I
Invokes the named script. The script is found by searching for a file called
“<scriptname>.tcl” along a list of script directories. When the script is invoked, the
variable argv will contain a list of the arguments (if any).

The operator may invoke only one script at a time; the script must terminate before the
operator may invoke any subsequent script.

The Scripting Engine sends event notices to M&C at script invocation and termination;
the name of the current script is published as a monitor data item for display.

ACTL RESM [<arg> [<arg> ...I]
A script can request operator action by sending an event notice to M&C and suspending
its execution. After taking the action, the operator uses ACTL RESM to cause the script
to resume execution. When execution continues, the variable rargv will contain a list of
the arguments to ACTL RESM, if any.

ACTL END
Terminates execution of the current script whenever it next suspends (e.g., to wait for a
directive response).

9

ACTL RESET
Resets scripting by killing the Uplink Scripting Engine task, which will be restarted
automatically. This is a drastic step, but protects against scripts that never suspend, like
this one:

w h i l e (1) (}

4.2 The Scripting Language

The Uplink Scripting Language is based on the standard Tcl 8.0.3 interpreter. Some of its
commands are implemented in C and loaded into Tcl interpreters as needed; others are defined in
a Tcl package called UlcSe which is package require’d by each created interpreter

The implementation of the Uplink Scripting language depends heavily on careful control of
access to the event loop. Consequently, the after and vwait commands are disabled.

The following commands are modified from their normal Tcl definition:

exit
Normally exit terminates the program, which in this case would be the Uplink Scripting
Engine itself. In this application, exit terminates execution of the current script, returning
control to the caller, which may be the Scripting Engine or a parent script. This was
define by redefining exit as follows:

proc e x i t (dummy) (

3
r e t u r n -code e r r o r

The script invocation code catches the error, sees that there is no error message, and
presumes that it’s a normal termination. Execution then continues in the parent.

bgerror
This command is redefined in the usual way to output background errors to the Scripting
Engine’s log.

The following is an incomplete list of the Uplink-specific commands.

susp ?onessage>?
Suspends script execution, sending the <message> to the M&C operator as an event
notice. If <message> is not given, a standard message is used. The message will usually
tell the operator to take some action, followed by sending the ACTL RESM directive.
The script can request operator input by telling the operator to send ACTL RESM with
particular arguments.

call acript name> ?carg>. . . ?
The call command is designed to allow test scripts to call each other safely, with minimal
worry about interference through shared variable names. The command

10

searches for the named script just as the ACTL directive does, and invokes it in a new
slave interpreter (see 4.3, Managing Script Execution). The current script is suspended
while the called script runs to completion; then execution of the current script is resumed.
If the called script throws an error or a fatal test failure, then all script execution is
terminated and control returns to the Scripting Engine itself.

As with the ACTL operator directive, argv contains a list of the remaining arguments, if
any.

include <script name>
Searches for the named script just as the call command does, and sources it into the
current interpreter. This is the normal way for authors of test scripts to load any libraries
of test code they might have written. Packages in the TCL-LIB-PATH can also be
require'd, but few test script authors are Tcl programmers, and using packages would
require them to learn an additional mechanism.

wait <seconds>
Pauses script execution for the specified number of seconds. The argument may include
a decimal fraction, so it's possible to wait for a fraction of a second.

fail onessage>
Signals a test failure. A script may choose whether or not failures should terminate
execution; either way a failure message is logged and sent to M&C. If failures are fatal,
thenfail is equivalent to error. Failures are fatal by default.

od directive t e x k
Sends an operator directive to the subsystem, and waits for it to be accepted. The test
fails if the directive is rejected.

odrej directive text>
Sends an operator directive to the subsystem, and waits for it to be rejected. The test fails
if the directive is accepted instead.

dr cresponse pattern>
<response pattern> is a string match pattern. This command attempts to match the last
received directive response text against the pattern. The test fails if it doesn't match.

This command is always used together with od or odrej, as follows:

od "MOD CMD E"
d r "*enabl ed*'l

;# Enable command modulation
;# T e s t t h e response

mon <item name>
The Scripting Engine receives a complete copy of all monitor data items published by the
Uplink Subsystem; a script can access the value of any item by passing its name to this
command:

11

se t s ta tus [mon s ta tus]

v e ~ b <condition> ?wait cseconds>?
This is a generic testing command, usually used in conjunction with the mon command.
By default, it simply verifies that <condition> (a Tcl expression) is true, callingfail if it
is not. If the wait <seconds> clause is added, then it will wait for up to the specified
number of seconds for the <condition> to become true. For example,

v e r i f y t h a t t he subsystem i s no t conf igured f o r serv ice.
v e r i f y ("wa i t ing" == [mon A c t i v i t y] 3
Configure the subsystem f o r serv ice w i t h spacecraf t 99
od "CNF SCN=99"

Wait u n t i l the subsystem has been conf igured.
F a i l i f i t hasn ' t success fu l l y conf igured w i t h i n 30
seconds
v e r i f y (" I n Service" == [mon A c t i v i t y]) w a i t 30

event <event list> ?wait <seconds>? ?with <commands>?
Each event notice has a unique integer ID. This command waits until an event notice is
received that has an ID in the <event list>. By default it waits indefinitely; if the wait
<seconds> clause is include, it waits for up to the specified number of seconds, and fails
if a matching event notice hasn't yet been received. For example,

event (2001 2002) wa i t 30

Sometimes the relationship between an event notice and the actual event that triggers it is
problematic. Consider the following case:

od "CN F" ;# Sends event 100, then responds
event 100 wa i t 30 ;# Always f a i l s

The event call always fails because the event notice is received before the od call retums.
The with <commands> clause handles this case:

event 100 wa i t 30 w i t h (
od "CNF" ;# Sends event 100, then responds

v e r i f y { " I n Service" == [mon A c t i v i t y] } w a i t 30
3
In this case, event executes its body, which may contain any desired commands
(including nested event calls), and will end successfully if a matching event is received at
any time from the start of executing <commands> up to 30 seconds after it's done
executing <commands>.

The Uplink Scripting Engine understands many other commands, including commands to send

12

event notices, write to the log, unpack urgv and rurgv in convenient ways, and so forth, but these
are the commands with interesting implementation details.

4.3 Managing Script Execution

Tests scripts will be written at different times, by different people, all of them making different
assumptions and few of them (initially, anyway) familiar with Tcl. If all test scripts were run in
a single interpreter, it would be easy for one script to leave garbage behind in Tcl's memory that
could distort the execution of a subsequent script. Therefore, each script must be run in its own
slave interpreter.

The corollary is that scripts cannot share data with each other through Tcl variables, but this
turns out not to be a problem. For this application, the essential data is the state of the Uplink
subsystem itself. Scripts can examine the subsystem directly, by querying monitor data or
sending query directives. Moreover, the effects of running a script should be apparent as
changes in the subsystem's state. (This is called positive closed-loop control, and it's a
requirement placed on all DSN subsystems.) Thus, there is little need for two scripts to share
data in any other way, except by the limited means of passing arguments from a calling script to
a called script.

If a script needs procedure definitions defined in another file, it can include that file; but the
included definitions will be valid only in that script.

The Scripting Engine creates and initializes a master Tcl interpreter at start-up. It is used only
for creating slave interpreters to execute scripts invoked via the ACTL operator directive.
Similarly, when a script uses the call command, a slave interpreter is created to execute the new
script. In both cases, the following Tcl code does the work:

proc : :ulcse: :Slavesource { s c r i p t a r g l i s t f i lename} {

F I R S T , Create t h e i n t e r p r e t e r 81 push i t onto t h e engine's stack.
T h i s w i l l cause i t t o be i n i t i a l i z e d w i t h a l l u l c s e commands.
s e t s lave [i n t e r p crea te]
Pushslave $slave

NEXT, pass t h e args t o t h e i n t e r p
$slave eval [l i s t se t argv $ a r g l i s t]

NEXT, invoke t h e s c r i p t .
s e t msg "I'

t r y €
} catch msg {

1
NEXT, destroy t h i s s lave and r e s t o r e t h e o l d one.
Pops1 ave
i n t e r p d e l e t e $s l ave

$51 ave eval source $ f i 1 ename

Do nothing

NEXT, repor t e r r o r s o r r e t u r n normally

13

i f 1"" != Bmsg} {
i f { [s t r i n g match " i n *:*" b s g l 3 C

e r r o r Smsa
~ - d

} e l s e {
e r r o r " i n $ s c r i p t : Bmsg"

r e t u r n
1

The arguments to SZaveSource are the script's name, i.e., its file name less the path and extension,
the list of arguments, if any, and the full file name of the script. Technically speaking, the first
argument is unneeded as it can be computed from the file name, but SZaveSource needs both and
as the caller always has both they are both passed.

First, a new slave interpreter is created. We don't use a "safe" interpreter as operationally there is
no way to give an untrusted script to the Scripting Engine, and it is often useful for scripts to
interact with the environment.

Next, the new slave is pushed onto the slave stack by PushSZave. This does two things. First, it
identifies the slave as the current interpreter, which is necessary for the handling of several of the
Scripting Engine's ACTL operator directives, and second it loads the Uplink Scripting Language
definitions into the interpreter. At present the slave stack is an explicit stack with a maximum
depth of 50. This limitation could be removed by relying on the implicit stack of slave
interpreters created by recursive calls to SlaveSource.

Next, the argument list is placed in the Tcl variable argv.

Next, the script is source'd into the new slave. The try.. .catch construct is a simple wrapper
around the standard Tcl catch command; if an error is thrown, then (in this case) the variable msg
is set to the error message.

Next, if any real errors were reported, the variable msg will be non-empty (recall that the exit
command has been redefined to throw an error with the empty string as its message). Any such
errors are reported.

4.4 Managing Asynchronous Waits

The Uplink Scripting Engine is an event-driven application based on Tcl's event loop.
Asynchronous waits are handled by entering Tcl's event loop recursively and staying there until
the desired event occurs. All of this is done in C code. I'll present two representative examples.

On a susp command, the Scripting Engine pauses script execution until an ACTL RESM
operator directive is received. The susp command is implemented in C; here is the relevant
code:

SeGoal r e s u l t = WaitFOr(SeRESUME) ;

i f (r e s u l t == SeEND)

14

r e t u r n endscr i p t (i nterp) ;
c
I
r e t u r n TCL-OK;

The waitFor() function is defined as follows:

s t a t i c SeGoal
wai t Fo r (SeGoal goal)
c

s c r i p t . wai ti ngFor = goal ;

w h i l e (sc r ip t .go tEvent != SeEND && scr ip t .go tEvent != goal)

sc r ip t .go tEvent = SeNOTHING;

TCl-DOOneEVent(TCLALL-EVENTS);
c
I
s c r i p t . wai ti ngFor = SeNOTHING;

r e t u r n scr ip t .go tEvent ;
I

It processes events repeatedly until some event sets script.gotEvent either to the goal event or to
SeEND. The latter code indicates that the ACTL END operator directive has been received,
terminating all script execution.

Thus, we can see that the susp command waits until the operator sends ACTL RESM, which
sets script.gotEvent to SeRESUME, or ACTL END, which sets script.gotEvent to SeEND. In the
latter case, the endscript() function simply sets the command's result string to "Script execution
terminated by operator. I' and returns TCL-ERROR.

This pattern is repeated for each of the commands that pause script execution. The od command,
for example, sends a directive and waits for a response. When the response is received-and
there is a timeout mechanism inherent in the M&C protocol, so a response is always received-
the callback will cache the response data and set script.gotEvent to SeRESPONSE. Since only
one directive can be sent at a time, this indicates that the desired response has been received.
The relevant code is as follows:

r e s u l t = wai tFOr(SeRESP0NSE) ;

i f (r e s u l t == SeEND)
c
3

r e t u r n endscr i p t (i nterp) ;

i f (scr ip t .1astResp.cat != RESP-COMPLETED &&
SCript.laStReSp.Cat != RESP-STARTED)

r e t u r n logIgnorableFailure(interp,
c

I
r e t u r n TCL-OK;

"Expected COMPLETED o r STARTED") ;

15

The code is essentially identical to that in the susp command, except that od goes on to test the
response. The ZogIgnorabZeFaiZure() function logs test failures, and returns TCL-OK or
TCL-ERROR depending on whether test failures are currently fatal or not.

Unit Test

The odrej, wait, and event commands are implemented in the same way. event is somewhat
more complicated because it can call itself recursively; therefore, it needs to push a record on a
stack for each call.

Raw lines of code 909 871 1
Stripped lines of code 389 4904

5. Usage in Practice

Integration

For our first delivery, ccp-test was used for both unit and integration testing. In our current
delivery, our new internal Scripting Engine has been used extensively for unit testing, and is
beginning to be used for integration testing; moreover, portions of the acceptance test plan are
currently being written as Scripting Engine scripts. However, these latter scripts are not yet at a
point where analysis is worthwhile. The following table shows some statistics.

Tests 170 5307
Density (testshne) 0.44 1.08
Raw lines of code 5889 nla

I V1.x: CcDTest/cco test 1 V3.x: Scriuting. Enpine I

Stripped lines of code
Tests

2577 n/a
1538 n/a

In every case, the code counts are for actual test cases; the test harness code is excluded, except
for boilerplate that appears in the test case files. "Raw lines of code" is simply the number of
lines of text in each test case file. "Stripped lines of code" is the number of lines after comment
lines and blank lines are deleted.

"Tests" is a rough count of the number of conditions tested in each file after boilerplate and test
set-up code was deleted. I counted one for each verified event notice, verified monitor data
value, verified directive response category (Le., success or failure), and verified directive
response string, and matched line of debugging log.

"Density" is simply the ratio of "Tests" per "Stripped line of code." I arrived at this as a rough
measure of how easy it is to write a test case using each framework.

Some observations on the data:

The low code density for unit tests using the External Harness is because many of the unit
tests were written for the test harness that preceded ccp-test. The 60% value found in the
integration tests should be more representative for ccp-test-style test cases.

16

Only one developer (myself') used ccp-test for unit testing; by comparison, two
developers used the Scripting Engine for unit testing, and we wrote over 30 times as
many tests. This increase has two causes:

o The version 3.x system is much larger, and there are more things to test.

o Scripting Engine scripts have proven to be much less fragile than their ccp-test
counterparts, and are also easier to write; hence, there's a greater motivation to
write them.

However, many of the tests counted in the ccp-test column involved detailed inspection
of the subsystem debugging log; as this contributed to fragility, relatively few of the
Scripting Engine tests are of this kind. If this kind of testing were added to the existing
scripts, the total number of Scripting Engine tests would be much higher

The shortest useful Scripting Engine test script is one line of code, performing one test.

0 The shortest useful ccp-test script is -7 lines of code, performing one test.

6. Conclusions and Future Work

Regarding internal vs. external testing, the lesson is that simplicity pays.

Our external test harness, ccp-test, was capable of testing the entire system including invocation,
normal operations, and failure recovery after unexpected task halts. However, it was difficult to
get started with, required lots of boilerplate code in each test case, and was extremely fragile
because the successful execution of each test depended on many factors external to the feature
being tested.

Our internal test harness, the Uplink Scripting Engine, is less ambitious than ccp-test but is also
considerably simpler to use. It assumes that the software is installed correctly and has already
been invoked, thus eliminating a major source of test fragility. It is available at all times, to
every developer and tester, and is monitored and controlled using the same interface as the
subsystem itself. And although there are test cases it cannot handle, it is nevertheless testing far
more test cases than its predecessor. As an added bonus, it can be used during normal subsytem
operations to automate "operator work-arounds".

Regarding the use of Tcl as the scripting language, Tcl proved to be a mature, solid tool. I've
frequently left my unit test suite running repeatedly over night or over a weekend to flush out
obscure timing-related bugs; and in no case did I see any problems related to Tcl or its libraries.
And even though the script invocation and management model is unusual, Tcl's slave interpreter
mechanism supplied everything I needed.

Work on the Uplink Scripting Engine is nearly complete. The only planned enhancement is to
generalize it for use by other DSN subsystems currently in development; as such, it will be added
to Uplink Common Software as part of our 4.x delivery. Also, as more developers and testers

17

begin to use it, I expect that there will be convenience enhancements to the Uplink Scripting
Language.

7. Acknowledgements

The research described in this publication was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics and Space
Administration.

18

