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Abstract 

nt model of evolving viriises competing with a n  
adapting immune system [l], we study the conditions iindcr which a 
viral qiiasispccics can maximize its growth rate.  The range of mil- 

tation r a t m  that allows viriises t o  tlirivc is limited from above diic 
t o  genomic information deterioration, and from below by insiifficicnt 
seqiicnce diversity, which lcads to  a quick eradication of tho virus by 
t,he i m m u n e  system. The mutation rat(. that optimally balances thew 
two requirements depends to first order on the ratio of the inverse 
of the virus' growth ratr and the  t ime the immune system needs to 
develop a specific answer to a n  antigen. We find that a viriis is most 
viable if it generates exactly one miitation within the  time it takcs  for 
the immune system to adapt  to a new viral cpitope. Experimental 
viral miitation rates, i n  particular for HIV (hiiman immiinodcficicncy 
virus), seem t o  suggest t h a t  many viriises have achieved thcir optimal 
mutation rate. 
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1 Introduction 
Since Niger1 and Scliuiter introduced tlie concept of a quasispecies 12. ij]. it 
has beconie a standard model to describe rnoleculai hmd viral evolution. If d 
simple. single peahed fitness landscape is assumed. quasispecies t tieory pi e- 
dicts that error-prone replication leads to tlie lormation of a central “master 
sequence”. surrountled by a cloud of mutant sequences. For viral evolution. 
this impliei that any “wilcl-type” sequence i b  accompanied by a cloud of re- 
lated mutants that. as d whole. represent a target for the immune syqtem. 
The yuasispecies approach to molecular evolution has been the object of 
detailed investigations. often supported by techniques of statistical physics 
[4. 5.  6. 7. 8. 9. I O .  1 I .  12. 13. 14. Is] revealing the characteribtic reatures 
of sucli systems. including tlie occurrence of an error catastrophe The lat- 
ter characterizes a systern i n  which h critical mutation rate exists beyond 
which the genomic information is irretrievably lost to niutations. i.e . beyond 
which selection ceases to operate [I 1 12. 1 3 .  16. 17. 18. IO] (for an in-depth 
discussion of erroi catastrophes and related phenomena see d s o  [2O]) The 
destabilizing effect of increased mutation rates has been observed for various 
viruses. including HI\’ [2l]  and Poliovirus [22]. 
Recently. various extensions of the Rigen-Schu5ter model have been consid- 
ered. in particular involving tlie shape of the fitness peaks mnd the land- 
scapes’s time-dependence While the shape of the fitness function influences 
the robustness of a species to mutations [23. 24. 251. a behavior qualitatively 
dilTerent from the standard results can be observed for non-statsonary fitness 
landscapes 126. 271. In rapidly changing environments. a second catastrophe 
emerges besides tlie well-known error catastrophe. termed “adaptation catas- 
trophe”. Tn a changing environment. sequence replication must occur with 
a non-vanishing error rate to enable the species to keep up with the envi- 
ronment al changes (Tn static landscapes. a zero mutation rate is ultimately 
optimal because it maximizes tlie average global fitness of the population ) 
Indeed. a selective advantage for so called “mutator mutants” (or ‘-general 
niutators” [.>SI) has been observed lor Etd ie r i ch ta  coli and Salmonella enter- 
zca under challenging living conditions [as. 30. ,311. 
For viruses in the environment of a n  addpt ive immune system. the fitness 
landscapes for hoth the virus and tlie immune systern are dynamically gen- 
erated by a cu-evolutionary process. This clynarnics can be studied within the 
quasispecies‘ framework if the quasispecies cliaracter of both the viral popii- 
lation and tlie motifs of immune receptors is acknowledged. In an immune 



re5ponse. the presence of an antigenic epitope induces the proliferation of the 
corresponding immune receptor bequence. ‘I‘his “master” sequence is asso- 
ciated with a cloiid of closely related receptor seque1ice5 that emerge from 
somatic hypermutation of R-cells in the germinal writer5 [32]. Competition 
between a viral population and an adaptive immune 5ystem t Aes place via 
an asymmetric coupling. while the immune quasispecies i 5  strongly attracted 
by the virus. the viral quasispecies i s  driven away lrom its current master 
sequence by ilie immune 5ystern. 7 his predator-prey-tlynamics results in a 
migration through vquence <pace a5 observed in many infectious diseases. 
such as HTV 135. ,341 
The co-evolutionary dynamics within an inlected host was r 
within a model relying only on a few dynamical rules [ I ] .  recapitulated in the 
following section Here. we focus on the implications of an optimal imniune 
response wi th in  this frarrieworh. arid consider the conditions that correspond 
to rnaxirrial uird fitness. Finally. we compare hnown viral mufat ion rates 
to those expected if a viral population ha5 achieved a near-optimal optimal 
mutation rate. 

2 Virus-immune system co-evolution 
1,et us assume that the viral and the imniunologichl quasispecies alihe expe- 
rience a single-peaked fitness function (Figure I ) .  albeit one that can change 
in time. 1,et us assume further that at any particular time. the (viral) master 
sequence of length n grows at a rate ov (much larger ttran the “olf-pehh” or 
background-fitness vu). and similarly for the immune system: uZs >> qzs. Such 
a simple immunologicd fitness function results from a reduction of the viral 
impact to induce proliferation of immune cells to its master sequence. Anal- 
ogou5ly. only the dominant immune secluence imposes a decay rhte 6 on i t s  
complementary viral sequence. Both species replicate imperrectly. with copy 
fidelities qu < I and qZ5 < 1 (denoting the probability for correct duplication 
of a monomer drawn from an alphabet of size A). The vim-immune system 
interaction is irriplenierited by the following dynamic rules that are cyclicly 
iterated. leading to the quasispecies’ migration through sequence space 

I .  Once the immune system imposes a decay rate 6 > 0 O T ~  the viral 
master sequence (centered at the viral fitness peak). the narrow niche 
of the virus i s  assumed to move to an arbitrary sequence of the first 
error class. 
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2. The viral quasispecies adapt5 to t h i 5  new fitness peak on a time scale 
7, . 

3 .  The fitness peak of the immune quasispecies is adjusted. and ~nove5 to 
the new maximum of the viral distribution. 

4. The immune system adapts to the new litriess peak on the time scale 
7,s. 

As discussed previously [ I ] .  the dynaniically generated time scale r = ru + rts 
can be approximated with the two expressions 

and 

The relative growth of the (moving) viral and immunological mabter se- 
quences in comparison to the environmental (background) sequences' growth 
can be determined a5 [ I .  261: 

. 1 E { o . / s } .  ( 3 )  
(e(a7-%P - ,(qFac-a,b ) ( 1  - 4z)G 

( A  - q.2 - vz)qz 
h, = 

leading to the conditions 

for viability of the viral and immunological species. respectively. The regimes 
of (co-)existence of the two quasispecies can be determined by analyzing K~ 
and In particular. the viral quasispecies is subject to both a classical 
error catastrophe at high mutation rates. and an adaptation catastrophe for 
small mutation rates. In contrast. the immune system (as the driving force) 
is not subject to a limiting migration velocity. and accordingly only displays 
the classical error catastrophe [ I ]  
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3 Optimal viral mutation rate 
TIaving derived the relatioris quantifying viral a5 \vel1 a5 inimiinological viabil- 
ity. we can now deduce optimal strategies for both the virus and the immune 

sv5tem ~ 1 i e  immune system attempt5 to minimize viral growth (2 0) 
which implies the relation 

between the optimal immiine receptor 5ize nzs  and  the per-site mutation 
probability pis. This prediction and how it Pares against, the background of 
experimental data ha5 been discussed in [ I ] .  Below. we extend thi5 approach 
to derive the conditions for optimal viral escape from an immune response. 
Tjet 11s first approximate n, in Eq. (?j) hy 

using 0, >> rjU. 4, M 1 .  
maximizing the viral species’ relative growth rate K ,  such that 

Optimizing viral viability conditions is akin to 

- = o .  
8% 

Inserting r = r, + r,, into (6) leads the equivalent condition 

2n 2 0 = ( 4 X G  - vu) + (5) ( 4 A J  - I ) %  n,rzT,, + 6[4w + (4 ,  - ~)V,”~,~, ,]  

((72, - 1 )~q~nCTwrtsl) 
n + l  - + rhJ[97J - 9, 

We can simplify this expression in the following manner. Writing (8) in ternis 
of the mutation probability p, = I - 9, rather tlian the copy-fidelity qu allows 
us to expand (8) in terms of p U  (while leaving the term in l n p u  untouched). 
Assuming furthermore that (S >> CT,  >> 11.. and n >> I .  we find 

a n u  
~ = o w 6’ + nSa,(Inp, - 6 r z s ) p u  M 0 .  (9) d9w 

We now proceed to determining the root of this expression. While this can 
be done numerically (see below). we first attempt to obtain an analytical 
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approximation that permits an intuitive interpretation. For this purpose. it 
is allowable to assume In p T J  FZ c o n s f .  hi In pu is a slowlv varying function of 
p U .  The optimal per-site rnirt&ion probability pE then follows as 

Figure 2 shows a comparison between the optirrial rnutafiori rate as given 
b y  the approximation ( I O ) .  and tlie exact solution pE ohtairred uunierically 
from (8). Despite the many approximations iliat have entered tlie derivation 
ol ( I O ) .  tlie analytic approximation is in good agreement with tlie numeri- 
cal results. Improvements to the analytic approximation are pos5ible if we 
neglect fewer of the higher order t ernis*. 
I,et us now rewrite ( I O )  in terms of the optimal qmornzc mutation rate 

This form suggests tlie following intuitive inteipretdtion The immune system 
adapts to a new virus strain within a time-span r15. while the virus replicates 
in a time-span l/cu. The ratio between these two time scales measures tlrie 
duration of one generation of tlie virus in units of the response time of the 
immune system. FTence. Equdtion ( 1  I )  implies that tlie virus can optimally 
evade the immune system if the virus suffers on average one mutation per 
genome within tlie time tlie immune system needs to adapt to a new strain 
(Fig. 3 ) .  This condition griarantees that a maximal number of virions have 
mutated away from the epitope to populate its first error class. prec7sely at 
that point in time when the immune system lias adapted to attack the new 
viral yuasispecies. 
If a viral yuasispecies optimizes its mutation rate according to Eq. (11) .  
we expect to see this reflected in a relation between the mutation rate and 
genome size. such that their product is constant (given a particular generation 
time I/cU). Optimization of genomic mutation rate can take place via an 
optimization of sequence length. given any particular per-site mutation rate. 
Table I shows that the genomic mutation rate p*,G only slightly varies within 
the class of R N A  viruses. which presumhbly have a similar generation time. 
This is well in agreement with the prediction ( 1  I ) .  

* A  significant irnprovcnicnt for small S can bc obt,aincd i f  instead of completely neglcct- 
ing t,he logarithmic term, we replace it wit,h a constant (c.g., 1npu E -7 for pu betwccn 
about and lo-’) 
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Table I :  Genomic length n and spontaneoits mutation rates per base pair and 
replication pu for RNA-based viruses that compete with advanced immune 
5ystems. as well as genomic mutation rate p: = n p u .  Note that this product 
is an approximation for pf = 1 - ( I  -pu) "  for n p u  < I .  n a t a  are reproduced 
from [ 3 5 .  36. 371. 

P 1 p: = I X P t J  

Given tlie adaptation time of the immune system r,, and the generation time 
1 , ' ~ ~ .  we can test the prediction Eq. (1 I )  more specifically. The adaptation 
time r,, is the time necessary for the irnmune system to develop a specific 
answer to an antigen. For most systems. this can be estimated to tahe 
between 7 to 14 days [38].  The generation times of viral species of courqe 
vary. but data from HIV-I is available. 'I'able 2 shows that the optimal 
genomic mutation rate as predicted b y  formula ( I  I )  is well within tlie range 
of the experimentally determined rate. This suggests that HTV-1 has adapted 
its mutation rate to optimally escape the immune system as well as the error 
cat as t rophe. 

Poliovirus 
Influenza A Virus 

'I'able 2: Comparison of the genomic mutation rate pf of FTTV-I with the 
theoretical estimate (ourts)-' from formula ( I  I ) .  Data are reproduced from 
[39. 401 

7.4. 103 1 . 1  . 10 -4  0.8 I 
13.6 . 103 > ~ 3 .  10-5 0 . c ~  

Spleen Necrosis Virus 
Molony Murine 1,eukemia Virus 
Ttoiis Sacrorna Virus 

1 HTV-I 

7.8 . 103 2 . 0 .  1 0 - 5  0.16 
8.4 . IO3 > 3.5 . 0.029 
9 .3  . 103 l1.6 . 1 0 - 5  0.43 
9.2 . 103 2.4. 10-5  0.22 



4 Summary 
The dynamics of co-ekolution bet ween virus arid inirnrine sy5tem can be stucl- 
ied within the framework of molecular evolution in t ime-dependent fitness 
landscape$. in which a constantly changing. polymorphic. viral population 
competes with an immune system adapting to heep trach of the viral changes 
Such an analy5is [ I ]  reveals an optinial mutation rate for the immune 5ystern 
(so iis to constrain the range of mutation rates within which the kirus is 5th- 
ble) that appears to be compatible with available data The same formalism 
can be used to determine the optinial vrral mutation rate. by maximizing 
the speed of adaptation wliile minimizing information loss due to mutations 
It follows that tlie optimal viral mutation rate is reached if ii sequence un- 
dergoes on averiige on? mutation within the time it tahe5 for the ininiurie 
system to adapt to tlie viral genomic signature. thu5 barely staving ahead 
of the immune system. Such opt irrid mutiition rates are mnipatible with 
experimentally determined ones. arid suggest that the constancy of genomic 
mutation rate$ within viral ( lasses (while sequence length and per-site muta- 
tion rates vary over many orders of magnitude) can he explained by selection 
favoring viral strains at or near the optimal rate. 
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Figure I : Co-evolution of viral and irriiriune quasispecies. 
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Figure 2: Optimal per-site mutation rate p:. comparison between the aria- 
lytic approximation as given by equation ( I O )  (dashed lines) and the numer- 
ical solution to equation (7) (solid linei). Phrhrrieters are (T, = I O .  vu = I .  
uZs = I O .  qzs = I .  qzs = 0.99. n = 100. (r = 200. X 1 4. unless specified 
otherwise in t lie plot. 



. . 
Figure 3:  Regrowth from a single virus particle to h population size of eight. 
within the t ime-span T%, (clots indicate mutations). T h e  virus can best evade 
the immune system if almost every virion in the population at t = r,, differs 
from the initial virion hy exactly one mutation. 
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