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Spectral Inference of Rapid Rotation

* Rapidly rotating stars
show line broadening

e Provides a independent
check of our
interferometric results

* Extreme rapid rotators
can be difficult to
characterize
spectroscopically due to
excessive line smearing




e Palomar Testbed Intferomter




Palomar Testbed Interferometer (PTI)
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> PTIis a Near-IR (K & H-band) > Single and Dual-Beam
single-baseline interferometer Interferometry:

> NS and NW baseline combination > Visibility (V?) measurement =>

, modelling (simple morphology
> NICMOS array combiner like one or two stars)

> Point Src Limiting Mag K ~ 6.5 > Simultaneous fringe tracking on
> Scientific Limiting Mag K ~ 5.7 two nearby stars => differential
astrometry

http://huey.jpl.nasa.gov/palomar
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Fringe Visibility

e Constructive &
destructive
interference of light

* Fringe contrast or
visibility:

v I"-I
I"+1 -
. . . ringe
e (Calibration i1ssues N ‘o Envelope

— Detector linearity
— Zero point measm’t
— Noise characterizat’n

Actual starlight fringes from IOTA - B And
Photo credit: R.R. Thompson



Visibility Functlﬁ 7/\(

For a ‘uniform disk’,
visibility matches:

J,(x)
X
B is the projected baseline

@1s the stellar disk size
A is the instrumental wavelength

Baseline, wavelength
known
— Can solve for 6

Use V? instead of V

— Unbiased estimator of
visibility
— See Colavita (1999)
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Limb darkening

e Stars are not uniform
disks

e (Gaseous, not solid,
sphere

— End up looking ‘into’ HST Image of a Ori - Betelgeuse
the star

e (Good and bad

— Have to account for this

— Measuring this can be
used to characterize
internal structure of star

— Direct probe of internal oot surfoe, ecge”of
temperature stucture |~ T atmosphere




Limb darkening. II

o Effects are less
striking in the near-IR

* Most of the effects are

seen at the higher
spatial frequencies

* Acceptable to do a
UD fit, and scale

— Corrections are ~1.5%
for main seq.

— Higher for evolved
stars

— Qives the size of the
mean radiating surface
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Initial Indications of Something
Interesting with Altair

e Use of the PTI
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Measurement of Altair’s
angular size with PTT’s N-S
and N-W baselines

— ~50° between the baselines

Best fit 1s an ellipse

— a/b =1.140+0.029

— a-b =424+79 uas

Star 1s a known rapid rotator

— Can derive rotational velocity:

. 2GM R,
vsini = 1—-—=
Rb Ra

— vysini=224+28 km s!

2-

Ellipsoidal Fit to Altair Data |
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The Roche Model

* Shape defined by local radius R(6,w) of an
equipotential surface:

GM + : @’ R*sin’ @
R 2
GM

"R ()

D = const

where 61s the colatitude and R (@) is the polar radius



Solving for the Roche Model

* A solution for the colatitude- and rotation
speed-dependent radius:

r(@,u)=

——COS
R usin @ 3

p |

where u is the fractional rotation speed and r( 6, @) is the
normalized radius. u is defined as:

, .8 GM
W =u .
27 R, (o)

RO,u) 3 cos”'(—usin@)+ 47




Elements of a Roche Model. I

* Four independent

parameters define Roche T
model on the backdrop of > G
the sky g

i — inclination i

o — orientation | S

R, - polar radius NG

u — fractional rotational speed

e Assumes a mass M and 15 10 05 oo

distance d for the object is
known



Noteworthy Assumptions

* Rigid rotation
— Poor assumption for most stars
— But actually not bad for A-type stars

* Uniform disk illumination
— Again, poor assumption for most stars

— Expected gravity darkening will be low contrast for
Altair in near-IR

— Again, actually not bad for A-type stars

* Working in image space, not Fourier space
— Downright dangerous assumption
— Will change the analysis in future experiments



Monte Carlo Fitting

e Can randomly generate values for {i, Ot,Rp,u} and examine
2 of fit

e Brute-force examination of Zz(i,a',Rp,u) can reveal global
minima in }? space
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Results of the Minima Search

* No statistically significant
global minima found for
{I,0,R ,,u}

— For rich enough
inteferometric data sets,
unique solutions are
possible

e However, a minima
‘trough’ found in {i,u}

1 =4.961x107 (90— i)’
+1.116x107(90 i)

15 30 45 60 75 90
+0.762 Inclination (i)

Rotation speed (u)

* No inclination less than —
30° is allowed, no speed Altair 2 in {i,u} subspace
less than 210 km/s




Unique Apparent Rotational Velocity

e Family of models

appear to fit data

— A single projected
rotation velocity
agrees with these
models

Unique solution for
vsini=210£12
km/s

— Independent of, and
agrees with, v sin i
from spectra

Finding not
inconsistent with
NPOI data
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Future Directions

* Other large (nearby) rapid rotators
— eg. Regulus, eps Sgr
* Multiwavelength observations

— Combine PTI, NPOI data in near-IR, visible

— Directly probe latitude dependencies of radius and
temperature
* Main limitation — resolution, not sensitivity
— Need 250 or more meters to have a large (10+) sample
size

— New interferometers (CHARA, NPOI) will make this
possible



Basic Parameters from Angular Diameters (6)

 Direct observation of fundamental stellar
parameters

o Effective temperature is defined as: L= AmOR Ty

1/4
F
which can be rewritten as: Tew = 1-316><107( ;(2)L J

R

— Fgq is the bolometric flux (W cm?), 6 is the Rosseland mean
stellar angular diameter (mas)

* Linear radius is simply: R=40xd
— Hipparcos (Perryman et al. 1997) distances now available

— Uncertainties in parallax (typically ~15-20%) still largest
contribution to error





