
FPGA Platform for Prototyping and Evaluation of
Neural Network Automotive Applications

Nazeeh Aranki' and Raoul Tawel'

'Jet Propulsion Laboratory
California Institute of Technology

Pasadena. CA 91109
arankiiii).brain.ipI.nasa.(lov

*Mosaix Technologies
176 Melrose Ave.

Monrovia, CA 91016
rta.vvel@mosaixtech.com

Abstract

In this paper we present an FPGA based reconfigurable computing platform for prototyping and evaluation of advanced
neural network based applications for control and diagnostics i n an automotive sub-systems. Recurrent networks with
internal or extemal feedback have proven to be very useful as models or controllcrs for dynamical systems. Our system
implements a recurrent multi-layer perceptron (RMLP), which may be regarded as a combined generalization of a
feedforward MLP and a one-layer fully recurrent network. The neuroprocessor design was implemented using a single
Xilinx Virtex FPGA and made extensive use of a variety of techniques; including intra-layer parallelism, inter-layer
multiplexing, and fixed-point bit-serial based computational techniques to achieve extreme design compactness. Flexibility
of the design was achieved by allowing the architecture to be on-the-fly programmable from RAM. The intra-layer
architecture of the neuroprocessor was organized in a SIMD configuration. While the overall goal is to develop an
inexpensive and commercially viable ASIC based on the FPGA IP core, we describe here our FPGA design implementation
and the two challenging applications, misfire detection and engine idle speed control, that had served a s the focus for this
effort.

1. Introduction

Goveminent regulations and stiff global competition have placed an increasing demand on the perfonnance of vehicle
control and diagnostic systems. In the United States, light trucks and passenger cars are required both to meet strict
emission standards and to perform continuous diagnostics of all emissions systems operating in the vehicle. These
requirements will become more comprehensive and difficult to achieve as emission standards are tightened this decade.
Neural networks provide a means of creating control and diagnostic strategies that will permit these challenges to be met
efficiently and robustly.

Modem automobile powertrains have complicated control and diagnostics sys tem that involve several interacting
subsystems, almost any one of which provides interesting theoretical and engineering challenges. Responsibility for many
important functions has shifted from mechanical control to coniputer control. This has resulted in a substantial increase in
fuel efficiency and, in combination with advances in catalyst technology, to a reinarkable reduction in emissions (99% in a
properly hnctioning system). This has been accomplished in the context of an extremely cost competitive industry.
Increasingly stringent emissions regulations require that any malfunctioning component or system with the potential to
undermine the emissions control system be identified. Hence, cost effective ways of meeting these demands are being
explored.

Neural networks have the potential for major impact in this work. Benefits may be anticipated in terms of the time required
to design and calibrate a control or diagnostic strategy or an improvemcnt in the observed system performance. In
collaboration with Ford Motor Company, we have been investigating the use of neural network hardware for control, virtual
sensors, and diagnostics [1][2][3]. While the benefits of neural based strategies is clearly evident, their main drawback is
that they are coniputationally demanding, and for anything but the simplest network architecture - will overwhelm the
computational resources available by the on-board engine coniputer. We anticipate that the broad coinniercial realization of
neural networks will require specialized coniputational hardware capable of perfomiing a inultitudc of different applications
effortlessly in real-time between engine events.

mailto:rta.vvel@mosaixtech.com

In the remainder of this paper we begin with a brief description of both the engine idle speed control application and the
engine misfire detection problem. This is followed by a section where we discuss aspects of using a recurrent neural
networks as a direct fault classifiers. Finally, we describe the design requirements and constraints necessary to execute such
networks and present the results of a comparison of software and hardware calculations for vehicle data.

2. Engine Idle Speed Control Problem

The control of an engine operating at idle was the logical first control problem to attempt with neural network methods.
Engine idle speed control (ISC) is a challenging yet reasonably accessible problem, since it does not require any large degree
of instrumentation or extemal sensing capabilities [4]. In addition, engine idle speed control can be viewed as rather benign,
since it is unlikely that application of a poor control strategy would inadvertently lead to catastrophic failure. However, idle
speed control requires the coordinated application of two different controls to regulate the engine spccd at a desired level in
the presence of torque disturbances which are often unmeasured.

The primary goal of the idle speed control is to maintain and regulate enginc speed to a desired level (which may vary),
subject to constraints on the controls, while the system experiences unobserved disturbanccs. Ford required that a trained
controller be capable of being integrated seamlessly with other control functions of a vchicle powertrain. It was also desired
that transitions to and from idle mode be handled gracefully, so that surges in engine speed do not make vehicle occupants
aware of engagement and disengagement of the neural controller.

A challenge of idle speed control was to use information that is available to a vehicle's powertrain control inodule (PCM) to
coordinate effectively the two available controls, bypass air and spark advance. A number of difficulties affect the
computation of these controls. Engine operation at idle is a nonlinear process that is far from its optimal range. The engine
experiences torque disturbances due to a variety of sources, and the role of the idle speed controller is to adjust for these
disturbances smoothly. These disturbances may be due to electrical loads placed on the engine, such as engagement of the
rear window defroster or power windows, as well as mechanical sources such as variable combustion and hydraulic
disturbances such as power steering engagement. Some of these disturbances are scheduled and/or flagged by the PCM,
thereby providing potentially useful anticipatory and feedforward information to the idle speed control strategy.

The two controls used for idle speed control have different dynamic effects on the engine. The bypass air command, which is
a signal between zero and unity that determines the duty cycle for a solenoid valve, regulates the amount of air allowcd into
the intake inanifold of an engine under conditions of closed throttle. The control range of the bypass air signal is large (more
than 1000 r h i n under idle conditions), but its effect is delayed by a time inversely proportional to the engine speed. The
spark advance command, ranging from 10" to 30" for idle conditions in the four-cylinder engine considered here, regulates
the timing of ignition. Unlike the bypass air control, spark advance has an inmediate effect on engine speed, but over a small
range (approximately 100 r/min). We assume that we have access only to those sensor signals that are available to the
vehicle's PCM. In particular, engine speed and inass air flow are the two relevant measured engine variables that are
available to the PCM and that are affected by the idle speed control process. We also have access to a number of software
flags that provide binary information about the states of a number of vehicle subsystems that affect the total load torque on
the engine.

In a typical production vehicle, the engine idle speed control strategy runs as a background PCM process that is interrupted
by a foreground process which perfomis operations required before each cylinder fires. The background process thus
executes asynchronously with the application of controls that occur at every engine event, and the time required to execute a
complete background process increases with engine speed. For the vehicle considered in this paper, the background process
of the PCM executes in approximately 3oins. The control commands for bypass air and spark advance are computed within
the background process as a function of measured PCM variables, some of which, such as engine speed and inass air flow,
are corrupted by noise.

Figures 1 & 2 show representative results of approximately 90s duration obtained with an FPGA implementation of a trained,
fixed weight neural network idle speed controller, In each of these figures, the middle panel shows the actual engine speed,
which is plotted as a solid pattern, superimposed on the desired engine speed, which is plotted as a dashed pattern. The
bottom two panels show the applied controls, and the remaining panels indicate the relevant patterns of flagged disturbances.

The performance of the closed loop system while the vehicle's air conditioning systcin was being cyclcd on and off is shown
in figure 1. It is noteworthy that under constant conditions of no disturbances, the vehicle's speed is held very close to the
desired speed of 750 r/niin, and the applied controls are rather steady. From this infonnation, we see that the bypass air signal
actually responds before engagement of the air conditioner's compressor, thereby accounting for the delayed effect of

changes in bypass air on engine speed. Furthermore, the spark timing does not need to be advanced significantly to
accoinmodate the load torque increase due to engagement of the air conditioning systcin, since the bypass air coininand is
capable of coinpletely handling this fonn of disturbance. On the other hand, the disengagement of the air conditioning system
is not anticipated via a software flag. Hence, as this transient occurs, there is a slight surge in engine speed, which is
immediately accommodated by a decrease in the bypass air command and a slight decrease in the spark advance. A similar
set of plots for torque disturbances associated with neutral-to-drive and drive-to-neutral transmission shifts are shown in
figure 2.

NeuWDrive Shifts - EPGA-Based Neural Control
Power Siernng On(lY#ff(O) plag ------7 - _I--_ -

I -

..................................... " """ " ~ 4 0)". -~
......

1
"_ " -- "l""-_l_

i Neutrai(lyDrjve(0) f i g

"
............. "..............."I" "....I..."

AC On(l)/Off(O) Flag

P A _ _ .

Rypa$s Air (duty cylce) 7
0,s -.

0.4 I-- _i '"---"? \

. "l__l -_ 0.3

0 lblb 200 m
Bwkgruund Lmp Number (-30 ms/loop)

Figure 2: A tcst of the FPGA-based impleinentation of
the neural network controller for disturbances
associated with the engagement and disengagement of
the vehicle's automatic transmission.

3. The Misfire Diagnostic Problem

In order to perform effectively on board a vehicle, diagnostic algorithms iiiust be extremely accurate and efficient. Detection
of engine misfire is a particularly challenging problem, because the algorithm must diagnose approximately one billion
events over the life of each vehicle, and perform that task between engine cylinders firing (which can occur at, rates as high
as 30,000 events per minute) without disturbing the computations required to carry out the control strategy.

Engine misfire is known to cause significant increases in tailpipe emissions and therefore has come under scrutiny as a iiiajor
contributor to emissions problem which could be avoided through prompt failure detection, fault isolation on board the
vehicle, and pronipt maintenance. While there are many ways one might try to diagnose engine misfire, the methods available
today must rely on information froin sensors already in use on production systems. This restriction limits the practical
methods of misfire diagnostics to analysis of the engine crankshaft dynamics, observed with a crankshaft position sensor
located at one end of the crankshaft. Basically, the strategy is to attempt to detect a crankshaft acceleration deficit following a
cylinder misfiring and determine if that deficit is attributable to a lack of power provided on the most recent firing stroke.

The problem of detecting the acceleration deficit is coinplicated by several factors: I) the crankshaft dynaiiiics are influenced
by unregulated inputs from the driver; 2) additional disturbances are introduced through the driveshaft from irregularities in
the road; 3) the dynamics are obscured by measurement noise and process noise; 4) the diagnostics must run in real-time

between engine firing events; and 5) the crankshaft is not infinitely stiff and cxhibits complex dynamics which mask the
signature of the misfire event and which are influenced by the event itself. In effect, we arc observing the torsional
oscillations of a nonlinear oscillator with driving forces applied at several locations along its main axis.

Figure 3 illustrates cylinder-by-cylinder crankshaft accelerations, taken when the engine is at high speed and lightly loaded.
Acceleration deficits corresponding to misfires (here artificially induced) are not easy to spot. The task is to infer from such
observations whether the driving forces produced by the engine combustion events correspond to normal combustion or
engine misfire. While i t is straightforward to write down the dynamical equations that approximate the crankshaft rotational
dynamics as a function of the combustion pressures applied to the piston faces, i t is quite difficult to solve those equations
and extremely difficult to solve the inverse inference problem associated with misfire diagnostics. Nonetheless, the
expectation of a discoverable dynamic rclationship between the observed accelerations and the driving forces in this system,
coupled with the absence of a satisfactory altemative approach, prompted our exploration of recurrent networks as a solution
to the problem.

1ooot- i

. ', -, ooo (a) Acoeleration values .
I I 1 I 1 I I

Figure 3 : Temporal stream of acceleration values, illustrating the effects of crankshaft dynamics. Misfires
are denoted by symbols 'x'. In the absence of torsional oscillations, the misfires would lie clearly
below 0 on the vertical scale

4. Time-Lagged Recurrent Networks

Recurrent networks with intemal or external feedback havc proven to be very useful as models or controllers for dynaniical
systems. Here we use a recurrent multilayer perceptron (RMLP), which may be regarded as a combined generalization of a
feedforward MLP and a one-layer fully recurrent network. Such networks are rather general approximators of dynaniical
systems. We have explored several ways of employing RMLPs for this problem; here we discuss their use as a direct
classifier.

4.1 Network Architecture

a) Idle Speed Control Problem
The ISC network architecture is 8-6R-2R, i.e. 8 inputs, one fully rccurrent hidden layer wilh 6 nodes, and two recurrent
output nodes. The activation function of each of the 8 computational nodes is a bipolar sigmoid. The inputs consist of engine
speed, desired engine speed and PCM flags indicating when the vehicle is in drive or neutral, when the power steering, air
conditioner or engine coolant fan are engaged, when the engagement of the air conditioner is imminent, and when power
steering has been activated.

b) Misfire Detection Problem
The misfire detection network architecture is 4-15R-7R-1, i.e. 4 inputs, two fully recurrent hidden laycrs with 15 and 7 nodes,
respectively, and a single output node. The activation function of each of the 23 computational nodes is a bipolar sigmoid.
The network executes once per cylinder event (e.g., 8 times per engine cycle for an 8-cylinder engine). The inputs at time
step k are the crankshaft acceleration (ACCEL, averaged over the last 90 degrees of crankshaft rotation), engine load (LOAD,
computed from the mass flow of air), the engine speed (WM), and a cylinder identification signal (CID, e.g. 1 for cylinder 1,
0 otherwise), which allows the network to synchronize with the engine cylinder firing order. This network contains 469
weights; thus one execution of the network requires 469 multiply-accumulate (MAC) operations and 23 evaluations of the
activation function. It is this coinputational load (187,000 MAC s-') that is impractical in an already heavily loaded existing
processor.

4.2 Training

Training recurrent networks often poses practical difficulties, primary among which is dealing with the recency effect, Le.,
the tendency of a learning network to favor recent training examples at the expense of those previously encountered. To
mitigate this difficulty Ford devised the mzilti-stream training technique (Feldkanip and Puskorius, 1994). This technique is
especially effective when weight updates are perfornied using the extended Kalinan filter method (Singhal and Wu, 1989,
Puskorius and Feldkanip, 1994).

The database used for the misfire detection network training was acquired by opcrating a test vehicle over as wide a range of
operation as practically possible, including engine speedload combinations that would rarely be encountered in normal
driving. Misfire events are deliberately introduced (typically by interrupting the spark) at both regular and irregular intervals.
A misfire alters the torsional oscillation pattern for several subsequent time steps, so it is important to provide the network
with a range of misfire interval for all combinations of speed and load that correspond to positive engine torque. Though in
this case the data used for training consists of more than 600,000 examples (one per cylinder event), it is clearly possible only
to approximate complete coverage. Hence it is important to carry out extensive generalization testing and analysis. Figure 3b
shows the output of the trained RMLP for the acceleration data of Figure 3a. This data segment was not used in training the
network.

5. Neuroprocessor System

An ever increasing number of diagnostic and control applications are being solved for the first time by the application of
trainable neural classifiers of suitable capacity. These classifiers, however, are bascd upon systems which require
considerable computational resources and as such must be implemented in dedicated silicon in order to niect the real-time
coinputational requirements for both on-board diagnostics and control.

The apriori design constraints set forth at the onset of this collaborative effort called for the development of an inexpensive,
fully autonomous, and comniercially viable electronic chip. This single chip implementation was required to (1) be extreniely
compact in size (because of the mass niarkct potential) (2) be flexible (so as to enable a number of different neural based
applications to share the hardware and sequentially execute on it), and (3) offer high computational resolution (in order to
avoid fixed-point induced arithmetic hardware diagnostic miscalls). By observing that even at red line internal combustion
events occur on a millisecond time scale, a novel, extremely compact and powerful layer-multiplexed bit-serial neuroiiiorphic
architecture was developed and exploited so as to implement the recurrent neuroniorphic formalisin in custom CMOS silicon.
While the overall goal is to develop an ASIC, we report in this paper its inipleincntation and evaluation on an FPGA based
reconfigurable computing platform as a mid-course event.

5.1 Architecture

At its most elemental level, neuromorphic computations can be suinniarized as a series of parallel multiply and accumulate
operations interspersed by an occasional non-linear operation. In view of the driving constraints outlined in the previous
section, we fully exploited five basic techniques to achieve our desired goals. These included usage of a (1) parallel
intra-layer topology organized in a (2) single-instruction-multiple-data (SIMD) architecture. This architecture made full use
of both (3) bit-serial fixed-point computational techniques; and (4) inter-layer multiplexing of neuron resources. Lastly (5)
nonlinearities were handled by the use of look-up-tables.

This resulting architecture is shown schematically in Figure 4 and consists of (1) a global controller; (2) a pool of 16
bit-serial neurons; (3) a bipolar sigmoid activation ROM look-up-table; (4) neuron state registers; and (5) a synaptic weight
RAM. In this design, both inputs to the network as well as neuronal outputs are stored in the neuron state RAM. When
triggered by the global controller, each of the 16 neurons perfornis the neuronal multiply and accumulate (MAC) operation.
They receive as input the synaptic weights (from the synaptic weight RAM) and activations from either (a) input nodes or (b)
neurons on a previous layer in a bit serial fashion, and output the accumulated sum of partial products onto a tri-stated bus
which is coinnionly shared by all 16 neurons. Because of the computational nature of neural networks - where information is
sequentially computed a layer at a time only enough neurons are physically iniplemented in silicon as exist on the layer with
the largest number of neurons for all applications of interest. As such, a candidate pool of 16 silicon neurons was chosen.
This means that the number of "real" or nonrecurrent neurons on any given layer is bounded by [1,16]. This intra-layer pool
of neurons is organized in a SIMD configuration. By single-instruction (SI) we mean that all active neurons in the pool
execute the same instruction at the same time. Multiple-data (MD) nieans that each active neuron acts on its own slice of
data, independently of all other processors. Together this means that at the intra-layer level, the chip perfornis fully parallel
computations under the control of the global controller.

--
Figure 4: Schematic reprcscntation of forward propagation iiiodulc

A significant reduction in silicon real-estate was achieved by performing inter-layer niultiplexing of the 16 neuron pool.
Inter-layer multiplexing refers to reusing the hardware used in calculating the activations of neurons in one layer for thc
calculation of neurons in another layer. Since neuroconiputations are performed a layer at. a time, this reuse of hardwarc is
aimed at increasing the utilization of the hardware that would otherwise remain idle. This re-utilization of hardware leads to a
significant reduction of the required VLSI real estate. The general idea behind layer-multiplexing is to reuse the circuitry
dedicated to one layer during the evaluation of the next layer. In this way, only enough hardware to accoiniiiodate the layer
with the largest number of neurons needs to be physically incorporated in hardware. Other smaller layers can then reuse
portions of this hardware during their evaluation.

Bit-serial algorithms for arithmetic operations are most suitable for efficient VLSI implementations because of their
canonical nature and minimal interconnection requirements. For this reason, we made extensive use of bit-scrial techniques to
enable us to incorporate onto a single compact chip a complete stand-alone neuroprocessor.

5.2 Global Controller

At the heart of the neuroprocessors architecture is the global controller. The controller contains the logic to enable the
neurochip to execute its task. This task is to load an architecture from RAM, and once triggered, to generate all necessary
control signals in addition to orchestrate data movement on-chip and off-chip. When there arc no computations being
performed, the global controller remains in the idle state, signaling its availability by having the active low BUSY flag set
high, When a LOAD command is issued, the controller reads froin RAM a neural network topology and goes into an idle
state. When the RUN coininand is subsequently issued, the global controller is in charge of providing control signals to the
16 on-chip neurons, the RAM and the ROM in order to proceed with the desired neuroconiputation. Input activations are read
out of the 64x16 Neuron State RAM, synaptic weights are read out of the 2Kx16 Synaptic Weight RAM, and both are
propagated to the bank of 16 neurons. In this way, the global controller keeps track of both intra-layer operations as well as
~~

inter-layer operations. Upon completion of a forward pass through the network architecture,
BUSY flag and retums to the idle state.

the global controller asserts the

1

Figure 5: Run-timeforward propagation controller

5.3 Neurons

Fixed-point bit-serial algorithms for operations such as addition and multiplication are uniquely suitable for efficient VLSI
implementations because of their highly compact representations. For example, the sizc of an nxn bit multiplier scales
quadratically (O(n2)) for a bit-parallel implementation and linearly (O(n)) for a bit-serial one. Such serial based
computational techniques were therefore exploited in the design of the neuroiis. A schematic representation of a bit-serial
neuron is shown in Figure 6. Each of the 16 neurons in the chip architccture is a duplicate of the same structure.

I iESEl i
Figure 6: Bit-serial neuroii

The multiplier shown in Figure 6, is used to perform the synaptic multiplications. The driving precision constraints for the
misfire problem called for the use of a 16x16 bit fixed-point multiplier. In operation, the multiplier accepts as input either an
input stimulus to the neural network, or an activation output from a neuron on a previous layer. I t multiplies this quantity by
the corresponding synaptic weight. The input stimulus (or activation output) is presented to the multiplier in a bit-parallel
fashion, while the synaptic weights are presented in a bit-serial fashion. The serial output of the multiplier feeds directly into
an accumulator.

....... ",.. "

, ,. ,.,, ,

Figure 7: Bit-serial multiplier of length n

The multiplier shown in Figure 7, is a modified and improved version of previously reported serial multiplier[5][6]. Any size
multiplier can be formed by cascading the basic multiplier cell. The bit-wise multiplication of the multiplier and multiplicand
is performed by the AND gates, At each clock cycle, the bank of AND gates compute the partial product tenns of the
multiplier Y[15:0] and the serial multiplicand X(t). Two's complement multiplication is achicved by using XOR gates on the
outputs of the AND gates. By controlling one of the inputs of the XOR gate, the finite state machine FSM can fonn the two's
complement of selected tenns based on its control flow. In general, for an nxn multiplier (resulting in a 2n bit product), the
multiplier can be formed by using 2n basic cells and will perform the multiplication in 2n + 2 clock cycles. Successive
operations can be pipelined and the latency of the LSB of the product is n+2 clock cycles.

LII

Figure 8: Bit-serial accumulator of length 11.

The accumulator, shown in Figure 8, is also of a bit-serial design. It is extremcly compact as it consists of a single bit-serial
adder linked to a chain of data registers. The length of the accuinulator chain is govemcd by the multiplication length. The
multiplier takes 2n + 2 cloclc cycles to perform a coniplcte nxn multiplication. At each clock cycle, the accumulator sums the
bit from the input data stream with both the current contents of the data register on the circular chain as well as any carry bits
that might have been generated from the addition in the previous clock cycle. This value is subsequently stored onto the chain
on the next clock cycle. This creates a circulating chain of data bits in the accumulator with period 2n + 2.

6. Performance & Results

0 5 -

0-

- 0 5

-1

A novel fixed-point bit-serial recurrent neuroprocessor architecture has been developed and implemented on a custom FPGA
board. This intellectual property was designed to behave as a co-processor to the host engine computer CPU. It is capable of
sequentially executing multiple neural based diagnostic and control applications between engine cvents. The FPGA board
was successfully deployed and field tested on a number of diagnostic and control probleins including - thc engine misfire
detection problem - in a production Ford vehicle. The FPGA system output for both applications is shown in figures 9 and
10.

c

Y
K

S
X

x

x
-

(b)Neurochip output X x
- - Y .

Figurc 9: Enginc Idlc Spccd Control Problem - FPGA System Output

I I I I I I I

1 000

. * * 1 (a) Acceleration values .
-1 000

1

Figure 10: a) Acceleration values, misfires are denoted by symbols ‘ X I . b) Corresponding
network outputs (FPGA).

The neuroprocessor design was inipleniented using a Xilinx Virtex series FPGA. For extreme design compactness, the design
made extensive use of a variety of techniques: including intra-layer parallelism, inter-layer multiplexing, and fixed-point

bit-serial based computational techniques. Flexibility of the design was achieved by allowing the architecture to be on-the-fly
programmable from RAM. The intra-layer architecture of the neuroprocessor was organized in a SIMD configuration. To
accommodate both bipolar sigmoids as well as excitatory and inhibitory synaptic weights, fixed point two’s complement
arithmetic was used.

The current design operates at a conservative 40 MHz clock speed. A neural application can be loaded into the hardware in
under . 5 p . Because of the SIMD architecture, it takes . 8 p to simultaneously perform 16 multiply and accumulate
operations. This translates into an effective computational throughput of 0.05ps per MAC opcration. For the engine misfire
4-1 5R-7R- 1 topology, the entire diagnostic classification was performed in under 4011s.

7. Acknowledgements

The research described in this paper was performed by Jet Propulsion Laboratory, California Institute of Technology, and
was sponsored by the National Aeronautics and Space Administration, Officc of Space Scicncc. This work was done in
collaboration with Lec Feldkamp and Ken Marko at Ford Motor Company.

References

1.

2.

3.

4.

5.

6.

Feldkamp. L. A,, G. V. Puskorius, K. A. Marko, J. V. James, T. M. Feldkamp, and G. Jesion, “Unravelling dynamics with recurrent
networks: Application to engine diagnostics”, Proceedings qj the Ninth Yale Workshop ore Adoptive ond Letri-iring Systems, New
Haven, CT, 1996 pp. 59-64.
Marko, K. A,, J. V. James, T. M. Feldkamp, G. V. Puskorius, and L. A. Feldkamp, “Applications of Neural Networks to the
Construction of “Virtual” Sensors and Model-Based Diagnostics”, Proceedings of’ 29th Inten~nationnl Sjinrpositmz on Automotive
Technology andAutoniations (ISATA), Florence, Italy; 1996, pp. 133-138.
Marko, K. A,, J. V. James, T. M. Feldkamp., G. V. Puskorius, and L. A. Feldkamp. “Signal Processing by Neural Networks to Create
“Virtual“ Sensors and Model-Based Diagnostics”, Proceedings of’ the Internationnl Conference on A! cinl Neiiml Networks
(ICANN’96), Bochum, Germany, 1996, pp. 191-196.
Puskorius, G. V., L. A. Fcldkamp, and L. 1. Davis, Jr. “Dynamic neural network methods applied to on-vehicle idle speed control”,
Proceedings qfthe IEEE, vol. 84, no. 10, 1996, pp. 1407-1420.
Raoul Tawel, Nazeeh Aranki, Gint Puskorius, Kenneth Marko, Lee Feldkamp, “Custom VLSl ASIC for Automotive Applications
with Recurrent Networks”, Proceedings qfthe IJCNN*98 Conference, Anchorage, Alaska, 1998.
Raoul Tawel, Nazeeh Aranki, Lee Feldkamp, and Kenneth Marko, “Ultra-compact Neuroprocessor for Automotive Diagnostics and
Control”, Proceedings ojthe Neurnl Networks and their Applications(NEURAP*98) Confirence, Marseille, France, 1998.

