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~ Opportunity .
- Hyperspectral instruments collect high volumes of data

- The instruments are capable of collecting more data than
available downlink bandwidth permits returning to Earth
Response

- Better utilize limited downlink resource by enabling the
return of the most important science data

Example Criteria for determining important science data

- Data quality control (e.g. do not downlink cloud covered images)
Feature detection
- Change detection

- Summary




Classification

Goal: Ievelop an effective classmer suntable
for onboard processing

EO-1 hyperspectal image classification problem:
- Discriminate between multiple classes of land cover in

hyperspectral images of ground scenes of the Earth

- Primary example presented in this work consists of

distinguishing between clouds, ice, land & water in
Hyperion imagery gathered by EO-1




Background | ; ; Fa
- Hyperspectral imagery and the Hypenon mstrument; o
Feature extraction

- Dimension reduction
- Spatial features

- Classification

- Support Vector Machines (SVM)
- Linear Discriminant Analysis (LDA)
- Manually developed classifier

Results
Conclusions and Future Work



Parameters Hyperion

# Spectral Bands | 220

Spectral Range |  0.4-2.4 um

Spatial

Resolution 30m

256 x 6926 pixels

Image Size ~ 7 % 200 km




ctive: extract features from the da a that can be
used to dlscn minate between classes

- Feature Components:

- Pixel based (purelx s;pectral)
= Use all 220 bands
-+ Reduce dimensionality of data

- Region Based (spatial and spectral)

- use pixel neighborhood regions
- Considerations:
- Classifier performance can degrade with excessive
redundant or irrelevant information

- Limited onboard processing capabilities restrict
access to only 12 of the 220 bands (any 12 bands
may be selected)




Reduce dimensionality by using
bands manually selected by
scientists
- Hand-6 — 6 bands chosen to
discriminate snow, water, ice
and land
- Hand-11 - 11 bands,
consisting of Hand-6 and 5

additional bands chosen for
cloud detection purposes
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- finds a linear subspace that results in Smallest mean-

square error between the feature vecto fors and their
projections

- identifies subspace that is efficient for representatlon

A A

| Best 1-D Dimension for | Worst 1-D Dimension for
representing the data representing the data




surroundlng plxels

- Raw pixels are vectors
representing 220 bands. In
experiments we use the
Hand-6 and Hand-11
values of the pixel.

Feature Vector:

A|lB|C E|F|G|H
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llna y Classification
- Support Vector Machine (S ;M)

- Use SVM to train land cover classifiers (e.c g cloud
classifier identifies clouds vs. [ice land water])

- Multiple Class Classification
- Linear Discriminant Analysis
- Manually developed classifier




The turquoise lines represent the
optimal hyperplane and its

corresponding margin for these data.

White lines are non-optimal
hyperplanes.

Creates da;zi:SJﬂer that separates two
distinct classes “

~ Maps the data lnto a high dimensional
“space and finds a hyperplane that

separates data from two classes

The optimal hyperplane maximizes the
margin (the distance between the
hyperplane and nearest points from
the two classes)

Kernels used:
. linear
- Gaussian radial basis function (rbf)
- normalized polynomial (npoly)
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= Run each lmage plxel through 4 b bmary class
(cloud vs. all, ice vs. all, ...) to obtain resq e
More than 95% of plxels are uniquely classified

However in some cases a pixel may be classified as more
than one class (4 6% have 2 conflicts, 0.0006% have 3 conﬂlcts)

A

A
A/D

Image pixels Bm.ary Classification results
classifiers

How do we resolve conflicts?




Create a plpelme of palrWIse claSSIﬂcatlons t e most accurate
being first. | S
Go through the pipeline in the followmg manner

Run classifier A

Remove all points classified as A

Run classifier B on remaining test data ‘

Repeat steps 2 and 3 for classifiers Cand D

Feature class A class B class C class D

..__) C]aSSIﬁer ) ClaSSiﬁer ...................... ) ClaSS]ﬁer ClaSSlﬁer

A B C D

= negative classification (= positive classification




- If a pixel is classified as 2 different classes,
reclassify with a pairwise classifier trained
specifically for those 2 classes. :

- Example:

- Pixel is classified as ice and water (the pixel is given a
(+) classification by the Jice vs. alland water vs. all
classifiers)

- Run pixel through an Jice vs. water classifier and use
the result




vectors e ik
- Separablllty cntenon ratlo of between-class
scatter and within-class scatter

- Seeks subspace that is efﬂcnent or dlscrl inatior

Worst 1-D : Best 1-D
subspace ~ ©

subspace




v, Water, I ce, and L ia;nd class i |; i i
~~~~~  Features are band values and ratios ob ds
- Features and thresholds | and-selec | by scienti
- Sequential evaluation similar to ad r

- Computationally inexpensive




Scheduled as ﬂrst classn‘uer to ﬂy

- January 2004




ally label data by loo mg atavisible

Extract random samplmgsfo;;: Iabeled ir |

for each class (cloud, ice, |and & water)

. Combine each class into merged set, takmg |

equal #'s of samples from each |mage

Each SVM classifier is trained on 3000
positive and 3000 negative examples

Ex: training a cloud classifier
=+ use 3000 cloud, 1000 each of ice, land, water

%
‘$ ‘. z 4a

Example training
image. Green regions
are part of the ice mask
for this image.




# pixels

6""40/0

f total p;iXels in i

Ground Cover

1% 6% k
- 14% O Cloud
h Olce
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Accuracy of one vs. aII cIassn‘uers tramed wat eliii
features. Best results were achieved with the radlal basis
function (rbf) kernel. The rbf is used inall classn‘lers
Shown be'ow o5 e |

% of piXeI*s correctly classified

Feature Type -

All |Hand-6 | Hand-11 | PCA | 3x3 Hand-6

cloud v. all | 95.8 95.3 96.2 952 |  96.5

icev.all | 99.0 | 99.0 988 | 99.5 |  97.8
land v. all | 96.9 97.0 97.2 96.6 97.6
water v. all | 97.5 96.1 95.9 97.9 97.2

Classifier




Classifier Comparise

Comparlson of SVM, LDA and SWIL clasmﬁers Wil

Accuracy

Overall Accuracy
% (including
cloud)

Ordered Merge - |
Hand-6 rbfg 95.8 97

1-on-1 Pairwise ) 1
Merge Hand-6 rbf 96.2 981
1-on-1 Pairwise |
Merge All rbf 94.4 98.2
LDA using All bands 88.0 89.0
SWIL 92.6 98.9

Only Water, Ice, and
Land %

Classifier




Very dlfﬁcult to dlscrlmlnate
cloud from ice

cloud classifier
EO1H...PP_cloud

EO1H...PP_ice
EO1H...PP_water

EO1H...PY_ice

" PY — has no PP - hard to
problem discriminate
finding ice  cloud from ice

Example of
cloud & ice




- Automated SVM .
classifier have

Issues and t ade offs:
m development effort (hand vs. automated)
- number of computations at run time
- level of accuracy
sumple & specific vs. more complex and general




Spatlal fspectral eatures

- Use more information than just neig ibor plxel
values







- Change detection

- Data selection
- Data frame
~ Region within data frame

- Summarization






