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Abstract- The Wigner equation and non-equilibrium Green's 
functions are two formalisms widely used in quantum device 
simulation. The Wigner equation, commonly solved by finite 
difference methods, is solved in this work by a recently developed 
Monte Carlo method. This method resolves both quantum 
interference and dissipation effects due to scattering with equal 
accuracy. Both limits, namely the pure quantum ballistic case 
and the scattering-dominated classical case are treated properly. 
A comparison of the Wigner MC solver and NEMO-ID is 
presented. Resonant tunneling diodes from the literature are 
chosen as benchmark devices. Currentholtage characteristics are 
compared for different temperatures and the effect of scattering 
on the current and the charge distribution is shown. Practical 
device simulation limitations of the Wigner MC method are 
discussed. Provided that numerical parameters of the Wigner 
MC method such as the coherence length and the grid size 
are chosen properly, results are obtained in good quantitative 
agreement with NEMO-1D. 

I .  INTRODUCTION 
At room temperature the electrical characteristics of nano- 

electronic and highly down-scaled microelectronic devices are 
influenced simultaneously by classical and quantum transport 
effects. Physical models capable of describing this mixed 
transport regime are given by the non-equilibrium Green's 
function (NEGF) formalism and the Wigner transport equa- 
tion. 

Based on the NEGF formalism, NEMO- 1D [ 13 has served 
as a quantitatively predictive design and analysis tool for 
resonant tunneling diodes (RTDs). Such devices have been 
studied at room temperature including the dominant effects of 
band-structure [2] and at low temperatures including dominant 
scattering effects[ 1][3]. 

On the other hand, the Monte Carlo (MC) method is 
nowadays a well established, reliable and accurate numerical 
method for solving the Boltzmann equation. Because of the 
similarity of the Boltzmann equation and the Wigner equation 
it appears very promising to develop a MC method also for the 
solution of the latter equation. A particle-based method has the 
advantage that scattering processes can be included straight- 
forwardly. MC approaches to solve the Wigner equation have 
been reported recently [4][5][6][7]. The major problem to 
overcome is that the Wigner potential does not represent a 
positive definite function. This so-called negative sign problem 
generally calls for the introduction of particles of negative 
statistical weight. A consequence of the negative sign problem 

is that even for a system of non-interacting particles the MC 
method has to include inter-particle interactions, allowing a 
transfer of, for example, the negative weight of one particle 
to the positive weight of another particle in order to achieve 
weight cancellation. Otherwise, if such a mechanism is not 
included, the MC method can be shown to be instable [7]. 
The particle weights of either sign grow exponentially at a 
very high rate, and because of the large degree of cancellation 
in the estimators the variance would also grow exponentially. 

11. THE PARTICLE MODEL 
The space-dependent Wigner equation for electrons includ- 

ing the Boltzmann collision operator Q[fw] reads 

($ $. v ' vr + qE ' v k  fw = &[fw] $- e w [ f w ] .  (1) ) 
The classical force term qE is separated from the Wigner 
potential, 

and thus appears on the left hand side of (1) [5]. Because 
the Wigner potential assumes positive and negative values, it 
cannot directly be used as a probability density. However, the 
antisymmetry of V, with respect to k allows the potential 
operator to be expressed solely in terms of the truncated 
Wigner potential [7], V$(k) = Max(O,V,(k)), which is 
positive definite and thus amenable to a probabilistic inter- 
pretation. Expressing the Liouville operator in (1) as a total 
time derivative and writing the operators on the right hand 
side explicitly gives 

out-scan. 



The three characteristic rates in this equation are the 
semiclassical scattering rate, X(k) = SS(k ,  k’)dk’, a self- 
scattering rate to be determined later, cy(k, r) 2 0, and a rate 
associated with the Wigner potential, y(r) = 1 V:(r, k) dk. 
Equation (2) is now interpreted as a Boltzmann equation, 
where in- and out-scattering processes are exactly balanced, 
augmented by a generation term for positive particles and one 
for negative particles. Note that an interpretation of the very 
last term in (2) as an out-scattering term is ruied out by its 
non-locality in momentum space. 

111. THE MONTE CARLO METHOD 
In the same way as for the Boltzmann equation, a formal 

integration in time gives a path-integral equation for the 
Wigner function fw. From the adjoint integral equation one 
can then derive forward MC algorithms. Various probabilities 
and probability densities employed in the MC algorithm can be 
directly identified from the integral-differential form (2). Intro- 
ducing the rate p = Xfcy, which will determine the free-flight 
duration, and the normalized distributions S(k’, k)/X(k‘) and 
V+(q, r)/y(r), (2) is reformulated as: 

In this equation all probabilities and probability distributions 
are enclosed in curly brackets. Now we chose cy such that 
p 2 y. Typical choices are p = X+y or p = Max(X, y). Free 
flights are intempted at a rate p. At the end of a free flight 
one selects from the complementary probabilities X/p and 
cy/p either semiclassical or self scattering, and selects the final 
state k for a given initial state k’ from S/X or the &function, 
respectively. Additionally, with probability y / p  one generates 
a pair of particles, whose signs are opposite. From the adjoint 
integral equation (not presented here) it can be seen, that the 
two generated states are k’+ q arld k‘ - q, where q is selected 
from the density V:(q,r)/y(r). Apparently, for y = 0 no 
particles need to be generated and because of y / p  = 0, the 
self-scattering rate cy can be chosen freely. In particular, cy can 
be set to zero, such that the classical MC method is regained. 
The particle model and the associated probability distributions 
describe the general, time and space-dependent case. In this 
work we restrict ourselves to the stationary transport problem, 
for which a single-particle MC method is obtained. 

Assuming that extended contact regions with high doping 
concentration are included in the simulation domain, one can 
safely neglect quantum effects in these regions and apply a 
classical distribution at the metaYsemiconductor contact. As 
in the classical MC method, a particle is injected at a contact 
from a classical distribution and undergoes a sequence of 
accelerated free flights and scattering. The free-flight time 
is determined by the rate p. In regions where the Wigner 
potential and hence the pair generation rate y are non-zero, 

pairs of numerical particles are generated according to the 
generation terms in (2). Therefore, after each generation event 
one has to deal with three states, namely the generated ones, 
k’ + q, k’ - q, and the after-scattering state k generated from 
the semi-classical scattering operator (the term “in-scatt” in 
(2)). Because repeating this step will lead to an exponential 
increase in particle number, an additional measure has to be 
introduced to control the number of particles. 

In the stationary MC algorithm developed such a measure 
is applied after each generation event, removing two in three 
particle states and continuing trajectory construction from the 
remaining state. The idea is that two particles of opposite 
weight and a sufficiently small distance in phase space can 
be assumed to annihilate each other. In a stationary method 
a phase space grid can be utilized, on which particle states 
are stored temporarily. Due to stationarity a particle stored 
in a cell at some time can be annihilated by a particle of 
opposite sign visiting the same cell at any other time. In the 
present algorithm this idea is realized as follows. First the 
weights of all three states are stored on the grid. Then the 
weights in the three cells are compared. The cell with the 
largest absolute weight is selected and the associated particle 
state is used to continue the trajectory. The sign of the particle 
weight is chosen such that the weight in the cell gets reduced. 
In this way, particle trajectories are constructed sequentially 
in the simulation. Furthermore, the method of selecting the 
continuing particle aims at compensating the local weight 
stored on the grid as much as possible. The residual weight 
on the grid has to be minimized as it is an indicator for 
the numerical error of the method. Simulations show that the 
weights on the grid cancel to a large extent. 

IV. RESULTS 
Two benchmark devices have been chosen, where Device 

1 is a resonant tunneling diode (RTD) described in [8]. 
Assuming a lattice constant of 0.565 nm, the tunnel barriers 
are 5 mono-layers thick and 0.27 eV high, and the quantum 
well is 8 mono-layers wide. In the Wigner MC simulation, 
the length of the simulation domain was 178 mono-layers or 
100.6 nm. The doping concentration in the contact regions 
is 2 . 10l8 ~ m - ~ .  The potential changes linearly only in 
the barrier/well/barrier regions and is constant in the contact 
regions. 

In the Wigner MC simulation of Device 1 the coherence 
length is chosen to be 62.15nm, which corresponds to 110 
lattice constants. Because of the rather large coherent off- 
resonant valley current of this RTD phonon scattering has 
only little effect on the I/V characteristics. Both simulators 
predict a slight increase in valley current due to inelastic 
scattering (Fig. 1). For the coherent case I/V characteristics 
at 77K and 300K are shown in Fig. 2. Compared with 
NEMO-ID, somewhat higher peak and valley currents are 
obtained by Wigner MC. The resonance voltages predicted 
by the two solvers agree very well. The coherence length has 
to be selected carefully when solving the Wigner equation 
numerically. The comparison of I/V characteristics shown in 
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Fig. 1.  IN characteristics of Device 1 at 300K obtained from Wigner MC and 
NEMO-I D. Transport is coherent (cah.) or dissipative (scatt). Both simulators 
predict a small effect of phonon scattering on the current. 

Fig. 2. 
and NEMO-ID. 

I/V characteristics of Device 1 at 77K obtained from Wigner MC 

Fig. 3 demonstrates that only a sufficiently large coherence 
length gives a realistic result. A too short coherence length 
results in an overestimation of the valley current. 

The layer structure of Device 2 is taken from [4], assuming 
a barrier height of 0.3 eV, a barrier width of 3 nm, and a 
well width of 5nm. The potential changes linearly in a region 
starting 10 nm before the emitter barrier and extending 19 nm 
after the collector barrier. In the contact regions the doping 
is 10l6 cmP3 and a constant potential is assumed. In both 
devices the effective mass is 0.067mo independent of position. 
The electron concentration in Device 2 is plotted in Fig. 4. At 
0.3V this device is close to off-resonance. Both simulators 
predict a significant increase in electron concentration in front 
of the first barrier and in the quantum well when phonon 

700 l ' l ' l * l .  

T=300K coherent 

.- L c = 4 5 n m M C  
LL = 62nm MC m 0.05 0.1 0.15 0.2 0.25 

voltage (V) 
OO 

Fig. 3. 
simulations. The finite difference (FD) result is taken from 181. 

Effect of the coherence length on the W characteristics in Wigner 

scattering is switched on. This effect can be understood as 
follows. With the assumed piece-wise linear potential profile 
a triangular potential well forms in front of the first barrier. In 
this emitter notch a quasi bound state forms. In the coherent 
case electrons reside in states above the emitter band edge and 
cannot occupy the lower notch state. With inelastic scattering, 
however, the notch state can be populated which increases the 
density in the emitter notch. As a consequence, the density in 
the quantum well is significantly higher and so is the valley 
current. 

V. DISCUSSION 

These examples demonstrate that a numerical solver based 
on the Wigner equation can provide quantitatively correct 
results. One requirement is that the coherence length is chosen 
sufficiently large. The completeness relation of the discrete 
Fourier transform, which reflects Heisenberg's uncertainty 
principle, A k ,  = x / L c  shows that a small coherence length 
L ,  will result in a coarse grid in momentum space, and 
resonance peaks might not be resolved properly. In the past 
the Wigner equation has been solved most frequently by finite 
difference methods. Due to the non-locality of the potential 
operator all points in momentum space are coupled and 
the sparsity pattern of the matrix is very poor. Therefore, 
increasing the number of grid points in k-space, related to 
the coherence length by Nk = L , / A x ,  can easily Lead to 
prohibitive memory and computation time requirements. This 
might be one reason why quantitatively correct solutions were 
difficult to obtain in the past. 

The MC method allows the number of k-points to be in- 
creased. In this work the Wigner potential is discretized using 
approximately Nk = lo3 points. However, high performance 
RTDs with very high peaWvalley current ratio pose a severe 
problem for the MC method. In such a device the density can 
vary over several orders of magnitude, which often can not 



sharp resonances on an average workstation without numerical 
instabilities. 

It is our conclusion that the novel Wigner MC method is 
not an optimal method for RTD simulation. However, since the 
method describes quantum effects and scattering effects with 
equal accuracy it is considered a predictive tool especially 
whenever some kind of quasi-ballistic transport condition 
without energetically sharp resonances is present. One strength 
of the Wigner function approach is the treatment of contact 
regions. Non-equilibrium transport can be simulated in the 
whole device formed by a central quantum region embedded in 
extended classical regions. The presented Wigner MC method 
can bridge the gap between classical device simulation and 
pure quantum ballistic simulations. 

VI. CONCLUSION 
A MC method for the simulation of non-equilibrium trans- 

IO 20 30 40 50 60 port in nanostructures has been presented. The method solves 
. the Wigner equation including the Boltzmann scattering oper- 
ator. The Wigner MC solver has been verified by comparative 
simulations with NEMO-1D. For simplified test structures 
the numerical solution of the Wigner equation is found in 
good agreement with the results of NEMO-ID. In the Wigner 
simulation the coherence length turned out to be a critical 
parameter that has to be chosen properly. The effect of phonon 
scattering on the device characteristics and the internal profile 
of the density is discussed. 
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