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ABSTRACT 
This paper discusses the Instrument Pointing Frame (IPF) Kalman Filter, which is an 

algorithm developed for focal plane calibration of NASA’s Space Infrared Telescope Facility 
(SIRTF). The IPF Kalman filter is a high-order square-root iterated linearized Kalman filter 
which is parametrized specifically for calibrating the telescope focal plane and aligning the 
science instrument arrays with respect to  the telescope boresight. The most stringent cali- 
bration requirement specifies an alignment accuracy of 0.14 arcseconds, 1-sigma, radial. In 
order to achieve this level of accuracy, the filter carries 37 states to estimate desired frames 
while also correcting for systematic errors in pointing. The estimated pointing frames and 
calibration parameters are essential for precision telescope pointing, and end-to-end “pixels 
on the sky” ground pointing reconstruction. 
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1 INTRODUCTION 

1.1 Overview 
The Space Infrared Telescope Facility (SIRTF) is a space-based telescope that provides high- 
resolution views of the universe in the infrared range of the spectrum. SIRTF represents the 
fourth and final element in NASA’s Great Observatory program. The new space telescope is 
presently scheduled for launch on a Delta I1 in August 2003. SIRTF has an 85 cm telescope 
aperture and requires the use of expendable cryogen for cooling the critical optical and 
detector units. It will be launched into a heliocentric orbit, slowly moving away from Earth 
with a small drift rate of about 0.12 AU per year [lo]. Working in the infrared, SIRTF 
complements the range of science observations and wavelengths covered by the other three 
previous NASA Great Observatories (Chandra for X-ray, Hubble for visual, GRO for gamma- 
rays). 

This paper discusses the Instrument Pointing Frame (IPF) Kalman Filter algorithm which 
has been designed specifically for calibrating SIRTF’s telescope focal plane. The IPF Kalman 
filter is a high-order square-root iterated linearized Kalman filter which is parametrized for 
calibrating the telescope focal plane and aligning the science instrument arrays with respect 
to the telescope boresight. The most stringent calibration requirement specifies an alignment 
accuracy of 0.14 arcseconds, 1-sigma, radial [20]. In order to achieve this level of accuracy, 
the filter utilizes 37 states to estimate desired alignments while also correcting for expected 
systematic errors due to: (1) optical distortions, (2) scanning mirror scale-factor and mis- 
alignment, (3) alignment variation due to thermomechanically induced drift, and (4) gyro bias 
and bias-drift in all axes. The gyro scale factor and alignment parameters are not included 
because they are calibrated separately in-flight using a dedicated Gyro Calibration Filter 
(GCF) filter. The estimated pointing frames and calibration parameters support on-board 
precision pointing capability, in addition to end-to-end “pixels on the sky” ground pointing 
reconstruction efforts. 

Various Kalman filtering approaches to calibrating frame alignments and focal plane dis- 
tortions have been considered in the literature. Work in this area includes Murre11 [l l] ,  
Deutshmann and Bar-Itzhack [7], Shuster [16], Shuster and Lopes [17], Bierman and Shuster 
[4], Davis and Lai [6], and Pittelkau [13]. An overview of the sensor alignment literature can 
be found in [16] and [13]. 

Compared to these references, the IPF Kalman filter approach is novel in that it integrates 
both science and engineering parameters into a single formulation. For example, plate-scale 
parameters are estimated simultaneously with alignment calibration parameters. As pointed 
out in [17] these two problems are typically solved in separate steps and by different teams 
of analysts. Combining the two steps is unique to SIRTF, and results in higher accuracy 
estimates and improved operational efficiency. The main challenge becomes one of addressing 
the filter’s high order. This challenge is addressed 
formulation (cf., [9]). 

An additional feature of the IPF filter is its 

by using a modern array square-root filter 

use of polynomials to characterize time- 
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dependent behaviours. The gyro drift and thermomechanically induced alignment drift are 
characterized in this manner. Since polynomial coefficients are constant, this design allows 
the global re-linearization of the Kalman filter (an advantage of the approach in [6 ] ,  and 
similar to  the “iterated” Kalman filter approach discussed in [8]) while still accommodating 
time-varying behaviours. Such a polynomial approach was successfully used in NASA’s SRTM 
mission [19] where the gyro bias was found to accurately fit a quadratic polynomial (in angle) 
over a 4 hour time span, using similar inertial grade mechanical gyros. 

SIRTF is designed to carry three science payload instruments: the Infrared Array Camera 
(IRAC), the Infrared Spectrograph (IRS) and the Multi-band Imaging Photometer for SIRTF 
(MIPS). All instrument arrays and spectroscopy apertures are located in the telescope’s 
circular focal plane which is cooled down to a temperature of 1.5 Kelvin. IRAC is designed 
to provide imaging and polarimetry over wavelengths of 1.8 to 27 microns. The IRS provides 
medium resolution spectra of astrophysical objects over wavelengths of 4 to 200 microns. 
The IRS instrument also includes peak-up arrays to provide real-time centroids of targeted 
IR objects, to facilitate their accurate transfer to the spectroscopy slits [l]. MIPS provides 
imaging, polarimetry and large area mapping over wavelengths of 20 to 200 microns. A main 
distinguishing element of the MIPS instrument is its scanning mirror, which moves along a 
single axis and is coordinated with spacecraft motions to facilitate science observations. 

During SIRTF’s 3 month In-Orbit Checkout (IOC) period, the space telescope will be 
commanded to  perform a series of repeated carefully designed calibration maneuvers for each 
science instrument array. After a maneuver series is completed for a given science array, 
the IPF filter processes the collected attitude history data and instrument centroid data, 
and produces an estimate of the instrument frame along with estimates of other alignments 
and calibration parameters. The basic philosophy is to combine a high-order Kalman filter 
with carefully designed on-orbit experiment designs to achieve the overall desired calibration 
accuracy. 

In order to  meet calibration requirements, the IPF Kalman filter has several novel and 
important features [3]. These features include (1) A gyro pre-processor which allows gyro 
sensitivities to be pre-computed and stored beforehand. This completely eliminates the 
need for repeated and time-consuming gyro sensitivity propagation during each iteration of 
the filter cycle; (2) A parameter “masking” capability which allows the user to restrict the 
model to  include only an arbitrary subset of parameters. This provides a completely flex- 
ible parametrization which allows one to match estimation model fidelity to the needs and 
requirements of each science array type; (3) A formulation based on a square-root iterated 
linearized Kalman filter which allows sequential data processing while providing good nu- 
merical conditioning [9]; (4) The flexibility to sequentially update prior estimates based on 
multiple data sets taken on separate days of the mission (i.e., a ”multi-run” tool); ( 5 )  A 
sandwich-based experiment design which provides observability of all desired parameters by 
starting and ending on the same reference sensor [20], and which allows the same Kalman 
filter to be used for a multitude of different array types (cameras, spectroscopy slits, scanning 
instruments); (6) The ability to integrate both visible and infra-red sources in the same cali- 
bration data set; (7) The ability to process partial centroids which only contain information 
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along a single axis of the array (i.e., “slit mode”). This occurs, for example, when calibrating 
the entrance aperture of a spectroscopy slit by first scanning a source across the narrow slit 
width, and then subsequently along its length; (8) Operation in one of several possible “lite” 
modes to allow a trade-off between accuracy and robustness. For example, a completely 
gyroless mode can be invoked for small and/or incomplete data sets. 

This paper will discuss the IPF Kalman filter parametrization, formulation and algorithm 
derivation. Only the most basic operation of the IPF filter will be presented. Details behind 
the other modes of operations are given in [3]. A simulation will demonstrate operation of 
the IPF filter as used for calibrating the MIPS 24 um array. 

Array /Slit 

1.2 Performance Requirements 
The end-to-end pointing requirement for SIRTF is 5 arcseconds absolute [20], and 1.4 arcsec- 
onds absolute for pointing reconstruction, all 1-sigma, radial. The most stringent requirement 
is for relative pointing, where attitude offsets accurate to 0.4 arcseconds are required to place 
an infra-red source at the center of an IRS spectroscopy slit. This amounts to a derived cali- 
bration requirement of 0.14 arcseconds for the IRS Short-Hi spectroscopy slit. Similar derived 
calibration requirements are tabulated for each of the instrument frames in Table 1.1. 

There are two sets of error budgets corresponding to Coarse and Fine surveys. Coarse 
surveys are more relaxed and take place earlier in IOC when the telescope is still cooling. 
Fine surveys occur later in the IOC period after the telescope has cooled sufficiently and the 
telescope is fully operational. 

Required TPF to 
IPF Alignment 

Coarse I Fine 

Table 1 .l: Derived Requirements for Focal Plane Survey (arcseconds, 1-sigma, radial) [20] 
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1.3 Experiment Design - Sandwich Maneuvers 
Each Prime frame is calibrated using a series of “sandwich” type maneuvers of the type shown 
in Figure 1.1. Here, a source is first centroided on PCRSI, then centroided on PCRS2, then 
moved over to the science array for a series of centroids (taken in a grid or pattern of points), 
and then centroided again on PCRS1. These are called sandwich maneuvers because they 
start and end on the PCRS sensors while containing science centroids in between. The 
centroids on the science array can be arbitrarily chosen by the designer, but must result in a 
time-tagged list of centroid locations in pixel coordinates. Examples include a 3x3 grid (IRS 
Peakup arrays), a 7x3 grid (MIPS arrays), and a pattern of 5 points arranged like the &of- 
diamonds playing card (IRAC arrays). The source used for science centroiding can be different 
from the one used on for PCRS centroiding. Calibration maneuvers are typically repeated 
several times to allow statistical averaging of results, giving a corresponding reduction of 
errors. 

PCRS 2 

*.....[ 2 

Figure 1.1: SIRTF Sandwich Maneuver for IPF Calibration 

2 PRELIMINARY DEFINITIONS 

2.1 Pointing-Relevant Frames 
The main frames relevant to SIRTF pointing are shown in Figure 2.1 and the transformations 
between them are summarized in Table 2.2. The transformations A,R,T,C denote 3 x 3 
direction cosine matrices for the indicated mappings. 

The International Celestial Reference System (ICRS) frame serves as SIRTF’s principle 
inertial reference frame. With a suitable relabelling, the star-tracker instrument frame serves 
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Transformation 
A 

T Instrument TPF IPFO 
C Scan Mirror Offset IPFn IPFp 

Description From To 
Attitude ICRS Bodv 

Table 2.2: IPF Filter Transformations 

Plane 
non on 1 Sky 

Note:A=G*A, T Ab@' 

Figure 2.1: SIRTF Frames and Transformations 

6 



as the SIRTF Body frame (i.e., when spelled with its boresight as the z axis - see [3]). The 
mapping from ICRS to the Body Frame is denoted as the spacecraft attitude A. During 
a sandwich maneuver, the current attitude A is attained from a gyro offset G relative to a 
starting attitude Ao, in which case the attitude matrix is, 

A = GAo (2.1) 

The Telescope Pointing Frame (TPF) has the telescope boresight as its z axis, and is defined 
rigorously in terms of the null points of the two PCRS sensors in [3]. The mapping from the 
Body Frame to the TPF is denoted as the alignment matrix R. 

Instrument Pointing Frames (IPF) are defined by specific pixel locations in each science 
array and which adopt the orientation of the pixel rows and columns. The mapping from the 
TPF to any specified IPF is denoted as T.  The IPF frames are stored in an on-board “Frame 
Table” as 128 values for T (stored as quaternions) and is used extensively for commanding 
purposes. Certain important IPF frames are denoted as Prime Frames (e.g., located at the 
center of each of the instrument arrays). Other frames are called Inferred Frames and are 
defined by a pixel offset relative to a nearby Prime frame. The nominal orientations of the 
science instruments and their associated Prime frames in the telescope focal plane are shown 
in Figure 2.2. Also shown are the associated w and v directions associated with each frame. 
The T matrix is the main quantity of interest for the IPF filter estimation effort. 

= 0 to  
its current local mirror position r # 0. For non-MIPS instruments, the C matrix is set to 
identity. For MIPS, the frame defined when the mirror is at position r is denoted as IPFr. 
Note that as the scan mirror moves there is an entire family of IPF’ frames generated as a 
continuous function of the variable r. 

The attitude A is time-varying due to telescope repositioning, and R is time-varying due 
to thermo-mechanically induced alignment drift. The mapping T is assumed constant due 
to the fact that the telescope focal plane is actively cooled. The mapping C is time-varying 
due to  a, time-varying scan-mirror offset angle I?. 

The C matrix represents a scan mirror offset from a nominal starting position 

2.2 Standard Coordinates 
Let u E R3 be a unit vector associated with a star location in the ICRS frame, i.e., 

1 COS (DEC) *COS (RA) 
u = cos (DEC) *sin (RA) [ sin (RA) 

where RA, DEC denotes the Right Ascension and Declination of the source (in radians). 
Let f? E R3 denote the unit vector after a velocity aberration correction has been applied 

(cf., ~511,  
U + %  

IIU + ? I 1  e =  (2.3) 
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where c denotes the speed of light. 
Define the vector s as the resolution of! in the IPFr frame to give, 

s = CTRA! (2.4) 

When the current attitude is the result of a gyro offset G from an initial attitude A0 one can 
decompose A as, 

Substituting (2.5) into (2.4) gives, 
A = GAo (2 .5 )  

s = CTRGAo! (2.6) 

Let the components of s be given as, 

Since s is a unit vector in the IPFr frame, it can be projected into focal plane coordinates 
to eive. 

The elements of z E R2 will be said to be in Standard Coordinates. 
Let the matrices C, T ,  R ,  G be parameterized in terms of the elements of the parameter 

vector p 2 f  (to be defined in detail in Section 3),  and let A0 be related to an available initial 
attitude estimate as follows, 

where 7 )  E R3 denotes the initial attitude error. Then one can write (2.8) in the functional 
form, 

This representation of the target source location in Standard Coordinates will be the starting 
point for the calibration process. 

A0 = ( I  - @’)A0 (2.9) 

= hZ(PZf, $9 (2.10) 

2.3 

Typically, science centroids are obtained in units of pixels. However, calibration is more easily 
performed if pixel measurements are converted to units of angle (radians), and expressed with 
respect to an agreed upon origin and orientation. Oriented Angular Pixel (OAP) coordinates 
have been developed specifically for this purpose. 

A pixel coordinate (CX ,CY> (in the instrument (z, y) coordinate system) is converted to 
OAP coordinates using the following transformation, 

Oriented Angular Pixel (OAP) Coordinates 

(2.11) 
Dll D12 PIX2RADX 0 cx-cxo 

” [E] [ D21 D22] [ 0 PIX2RADY ] [ CY-CY0 ] 
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Here, PIX2RADX ,PIX2RADY are nominal plate scales, and the pixel coordinate (CXO , CYO) 
specifies the desired location where the Prime frame is to be embedded. The quantities 
Dll, D12, D21, D22 are flip parameters (having values 0, -1, +1), which specify how to map 
the instrument (x, y) coordinate directions into the focal plane (w, v) coordinate directions 
defined in Figure 2.2. 

2.4 Mapping OAP to Standard Coordinates 
Let ytrue E R2 be a target source as observed in OAP coordinates assuming that there is no 
centroiding error, 

r -I 

Yw-true 

Yv-true 
Ytrue = 1 J (2.12) 

Generally, ytrue will not coincide exactly with z in (2.10) due to non-idealities in the optical 
system. To accommodate such non-idealities, a model which maps ytrue in OAP coordinates 
to z in Standard coordinates is taken to be of the form, 

(2.13) 

Here M E R2x2 is a perturbation matrix which captures the non-idealities such as optical 
distortions, plate scale errors, etc. The exact form of M will be discussed in Section 3.2 
as a function of the distortion parameters pl, the scan mirror offset I', and the centroid 
measurement Ytrue. 

The relation (2.13) assumes noiseless centroids. To generalize the model, a noisy centroid 
measurement y of the form (2.11) is introduced, 

y = [  E] (2.14) 

The noisy centroid y is used to  replace ytrue in (2.13) according to the following relation, 

(2.15) 

where u denotes the centroiding error in y. If M is small (which should always be the case), 
equation (2.15) is first-order equivalent to the more familiar additive noise model y N ytrue+u. 

2.5 Calibration Equation 
By equating (2.10) and (2.15) the following Calibration Equation is obtained, 



This is the main equation to  be used for all SIRTF focal plane calibration. It is an end-to-end 
relation that maps the source location (known from a star catalog with velocity correction) to 
the pixel location where the source is observed on the science instrument array. Accordingly, 
it contains both optical distortions parameterized by p l  and systematic pointing errors pa- 
rameterized by p 2 f .  The end-to-end pointing transformations associated with the Calibration 
Equation (2.16) are summarized in Figure 2.3. 

pl E R17 Description 

boo Constant Plate Scales 
a00 

Coo 
a10 
bl0 I' Dependent Plate Scales 
c10 
dio 
a20 
b20 r2 Dependent Plate Scales 
c20 
d2o 

bo1 
Col Linear Plate Scales 
do 1 

f 0 l  

a01 

eo1 

3 IPF FILTER PARAMETERS 

6Pl E R17 

baoo 
bboo 
6 C o O  
Sa10 
6blo 
6c10 
6 4 0  

ha20 
6b20 
6c20 
6d2o 

&a01 
6boi 
6Col 
&dol 
he01 
6fOl 

3.1 Full State Description 
The starting point for the Kalman filter design is the Calibration Equation (2.16). A full 
state vector x f  is defined as, 

r 1 

where p l  describes optical distortions and p2f describes the systematic pointing errors in the 
Calibration Equation (2.16). 

The parameters in p l  and p2j are selected such that they are constant parameters. A 
summary of the states p l  and p2f is given in Table 3.3 and Table 3.4. The next few subsections 
will be devoted to  giving a detailed description of each of these parameters. 

Table 3.3: p l  State Variables, Perturbations and Mask Vector 
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Projection on Sky 

70 Coarse Cntr (F107) 

Figure 2.2: SIRTF Prime Frame Definitions 

Instrument 
Pointing Frame 
[Wh mirror offset) 

c Y 
t 

IPF_I[ Ez@ Y] 

Geometric 
Projection 

standard Coords 

Instrument 
Inertial Pointing Frame Telexope 

[Nominal) Pointing Frame Body Frame Frame 

Oriented Angular 

Note: A = G * A, I 

D 
I 

Angular 
Pkel Coords 

(c,,c,) - Centroid pixel location (pixels) 
(C,~,C~~) - Center pixel location (pixels) 

(P,jj) - Centroid location in angular units (rad) 

Figure 2.3: End-to-End Pointing Transformations 
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Description 
mirror rotation axis unit vector in IPF (x) 
mirror rotation axis unit vector in IPF (y) 
mirror rotation axis unit vector in IPF (z) 
scan mirror rotation angle scale factor 
T (TPF to IPF) frame quaternion, Q T ( 1 )  
T (TPF to IPF) frame quaternion, q ~ ( 2 )  
T (TPF to IPF) frame quaternion, qT(3)  
T (TPF to IPF) frame quaternion, q ~ ( 4 )  
R Alignment quaternion, qR( 1 )  
R Alignment quaternion, QR(2)  
R Alignment quaternion, q R ( 3 )  
R Alignment quaternion, QR(4)  

Linear time varying contribution on alignment x-axis 
Linear time varying contribution on alignment y-axis 
Linear time varying contribution on alignment z-axis 
Quadratic time varying contribution on alignment x-axis 
Quadratic time varying contribution on alignment y-axis 
Quadratic time varying contribution on alignment z-axis 
Delta Gyro Bias from Nominal, x-axis 
Delta Gyro Bias from Nominal, y-axis 
Delta Gyro Bias from Nominal, z-axis 
Gyro Bias Drift Rate, x-axis 
Gyro Bias Drift Rate, x-axis 
Gyro Bias Drift Rate, x-axis 

6P2 E RZO 

sa 

Table 3.4: p2 State Variables, Perturbations and Mask Vector 
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3.2 Optical Distortion Parameters 
The optical distortions in the calibration equation (2.16) are parameterized in terms of the 
matrix M E RZx2 which has the form, 

00 - - [ ;;; ;;; ] ; Ml0 = [ alo dl0 clo bl0 ] ; M20 = [ dzo b20 c20 ] ; (3.3) 

The parameter COO is repeated symmetrically in Moo to disallow a redundant rotation with 
el (cf., p i ) .  

3.3 Scan Mirror Rotation Parameters 
For science arrays having a scan mirror (i.e., MIPS arrays), the scan mirror rotation trans- 
formation can be defined by a direction cosine matrix C which maps the nominal IPF frame 
(denoted as IPFo) to the IPF frame with a mirror offset (denoted as IPFr) .  Mathematically, 
C has the form, 

c ( p z f ,  r) = COS (pr) I + (1 - COS (pr)) U , U ~  - sin (pr) U; (3-5) 

Here a, = [ a,l am2 am3 1' is the scan mirror spin axis, I' is the measured scan mirror 
angle (in radians), and p is the scale factor associated with measured mirror angle. The 
vector a, is constrained to have unit norm, i.e., 

2 2 a,, + am2 + ai3 = 1 

and the mirror transformation becomes the identity when the mirror is located in its nominal 
reference position (r = O), i.e., 

For non-MIPS instruments (without a scan mirror), the condition C = I is enforced. 
c (P2f, 0) = I .  (3.7) 

3.4 Telescope Frame Parameters 
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3.5 Thermomechanical Drift Parameters 
The direction cosine matrix R represents the time-varying mapping from the STA-defined 
Body frame to  the TPF frame. The IPF filter parametrizes this misalignment in R as a 
quadratic function of time, i.e., 

where, 

(3.10) 

The time t = 0 in (3.9) corresponds to the time tag of the first centroid of the very first 
sandwich maneuver. Accordingly, the quantity & is the static alignment at time t = 0. For 
notational simplicity, the quaternion equivalent of the initial alignment Ro is denoted as q R  

(rather than qRO). 

3.6 Attitude and Gyro Parameters 
The gyro offset G in (2.5) can be found by integrating the true rate w E R3 as, 

G = -W”G (3.11) 

Since the true rate w E R3 is not known exactly, an estimate must be generated. For 
computational convenience, this is done in two stages. First, the gyro pre-processor produces 
a nominal rate vector estimate w k  E R3 according a certain construction (discussed in [3]). 
Second, an additive correction is applied to the nominal rate vector w k  to get the true rate 
as, 

w = w k  + b, + c,t (3.12) 

4 FILTER MECHANIZATION 

4.1 IPF Kalman Filter Architecture 
The SIRTF IPF Kalman Filter algorithm is architectured as a square-root iterated linearized 
Kalman filter. The filter operates in block sequential form as shown in Figure 4.1. First, the 
nominal state estimate to be used for linearization purposes is prescribed at the beginning of 
the data set, corresponding to t = 0. For notation purposes, the start time of the j t h  sandwich 
maneuver is denoted as t j ,  and the individual centroid times are denoted as T k .  Centroid data 
from each individual maneuver is then “stacked” into a single tall measurement vector which 
is used to update the Kalman filter. Accordingly, for a calibration data set having N sandwich 
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maneuvers, there will be N vector measurement updates. After processing the entire data 
set, the estimated correction is applied and the filter is re-linearized about the resulting new 
best state estimate. This process of re-linearization is repeated until convergence is obtained. 

Propagate- Propagate Propagate 

: t=T, T, T, - - - -  Tk 

8 :  
_ I .  

Figure 4.1: Square-Root, Iterated and Linearized Kalman Filtering Process 

4.1.1 Time Update 

Corresponding to  the full state vector xf defined in (3.1), an incremental state vector is given 

sx = [ z; ] E R37 

where the quantities p l ,  bp1, p z f ,  bp2 have been defined in Table 3.3 and Table 3.3. It is noted 
that bp2 E R20 is of smaller dimension than p2f E R24 due to constraints on the parameters. 

Since the IPF Kalman filter is parameterized by constant coefficients, the incremental 
state propagation equation can be written as, 

Accordingly, the discrete form of the incremental filter propagation equation for the mean 
and the square-root covariance can be written as, 

1 1 

p? 3 + 1 b  . = p?.. 313 (4.4) 
where j + llj signifies the predicted value at the start of the j + l ' th maneuver, given mea- 
surements from the past j maneuvers. 

4.1.2 Measurement Update 

The Calibration Equation (2.16) will serve as a measurement equation for the Kalman filter 
by rearranging it into the form, 

Y = N P l , P 2 f , J h Y )  + v  (4.5) 
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where, 

Note that the measurement y is used on both sides of (4.5), which requires a slight abuse of 
Kalman filter conventions (motivated by the implicit form of y in (2.16)). Note also that the 
notational dependence of M on I' has been dropped for convenience. 

Equation (4.5) can be linearized to obtain the desired Kalman filter update equation. To 
this effect, a prediction ĥ of h is constructed using the nominal state estimates p 1  and p 2 f  as 

h ( P l , P 2 f ,  $ 7  Y) = - M ( P 1 ,  Y)Y + hZ(P2f7 $1 (4.6) 

follows, A 

h = h ( F l , F 2 f , O , Y )  (4.7) 
Subtracting (4.7) from (4.5) gives the desired incremental measurement equation as, 

(4.10) 

= H S x + n  (4.11) 

where, 

H A [ iC1 K 2 ]  (4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) A n = H+$+v 

Equation (4.11) is the desired incremental measurement relation. The perturbation parameter 
vector Spl  E R17 is defined in Table 3.3, and 6p2 E R20 is defined in Table 3.4. 

It is emphasized that the perturbation Sp, E R20 has a smaller dimension than the vector 
it perturbs p2f E R24. This is due to the many constraints that exist in the problem. For 
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example, quaternions in p2f  have 4 elements, but only 3 of them are independent and have 
been carried in the perturbation 6p2. 

In general, the derivative of a function f(&) with respect to a constrained parameter 
vector tf, will be defined in terms of only the independent parameters S[ (where St can be 
of lower dimension than [ I )  by the matrix K that satisfies, 

f ( b >  = f ( i f )  + w + O(lPt1 1 2 >  (4.18) 

Because in this general case the variable t may only exist in its incremental form St, the 
following notation will be used throughout the remainder of the report, 

(4.19) 

For example, this notation has been used in (4.14) for describing IC2 which involves a deriva- 
tive with respect to Spz.  

The measurement noise n in (4.17) is a combination of both attitude error $ and cen- 
troiding error v which gives a non-diagonal structure to the measurement noise covariance. 
In particular, assuming $ and v are statistically independent, 

R A +nT] = E [  ( H + s ~  + v) (H+S$ + .)'I (4.20) 

= H+P+H,'+E (4.21) 

where P$ = Cov[$] is the attitude error covariance and Z = Cov[v] is the centroiding error 
covariance. 

Let the following factorized matrices be defined, 

(4.22) A l *  R = RTR? 

(4.23) 

(4.24) 

Then (4.24) can be rewritten as, 
1 T  

(4.25) 

Recognizing that this has the general form CCT = AAT + BBT, the square-root factor R4 
can be determined by using a QR factorization (cf., [3]). 

Equation (4.11) provides an incremental measurement Sy from a single centroid mea- 
surement. For filtering purposes, all of the centroids associated with the j ' th  maneuver are 
stacked into a single measurement vector as follows, 

Sfj j  = HjSX + i i j  

R- :RT - - - &,p$p$H,T + 

(4.26) 
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where, 

a 
IC1 = - ( -M (Pl, Y) Y) 

(4.27) 

(4.28) 

where mj is the number of centroids in the j ' th  maneuver. 
Using the stacked measurement equation (4.26), the Kalman Filter gain and the square- 

root covariance update can be obtained. Specifically, given H j ,  F'3ij-l and $ consider the 
unitary triangularization of the following matrix, 

(4.29) 

where OT is an orthogonal matrix (i.e., OTO = I ) .  The factorization in (4.29) can be 
performed using a QR factorization [3]. Extracting X ,  Y and 2, one can compute the 
Kalman Filter Gain K and square-root covariance update equation as (cf., [3][9]), 

Kj = YX-' (4.30) 

pz.  =z (4.31) 
Note that the inverse in (4.30) is simple to compute and well-conditioned because it is a 
square-root covariance in block diagonal form. Given the Kalman gain Kj in (4.30) the 
incremental state update equation after the j ' th  maneuver is, 

1 

313-1 

Sij l j  = Sijlj-1 + Kj SQj (4.32) 

4.2 

The sensitivity iC1 is defined from (4.13) as, 

Sensitivity Equations for p l  Parameters 

Using Kronecker identities (cf., [3],[12]) gives, 

-M (Pl, Y) Y = -(Moo + rM10 + r2M20 + Mol (Y))Y 

= - (y' €3 I )  Vec  ( M )  

= - (Y' €3 1) [ so0 rs1o r2s20 fu (y) 3 Pl 

(4.33) 

(4.34) 

(4.35) 

(4.36) 
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where, 
1 0 0  1 0 0 0  1 0 0 0  

0 0 1 0  
0 1 0  0 1 0 0  0 1 0 0  

o o o y w o o  
o y , o  0 0 0 (4.38) 

(4.39) 

Substituting (4.36) into (4.33) gives the desired expression, 

K1 = - (yr  (€3 I )  [ s o 0  rs1o r2s20 fu (9) ] (4.40) 

4.3 

This section will use equations (2.6)-(2.8) to calculate the sensitivities IC2 and Hq defined in 
(4.14) and (4.15)(), respectively. 

Assume that current estimates C, f, A, G, A 0  are sufficiently close to C, T ,  R ,  G,  A. so that 
one can define the perturbations c k ,  &,  &, g k ,  $k according to the following relationships, 

Sensitivity Equations for p2 and @ Parameters 

c = ( I  - c ; )C  (4.41) 

T = ( I  - e;)? 
R = ( I  - $;)R 
G = ( I  - g ; ) G  

A0 = ( I  - $ , " )A0  

Substituting (4.41)-(4.45) into (2.6) and rearranging gives (cf., [3]), 

(4.42) 

(4.43) 

(4.44) 

(4.45) 
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where, 

It is seen from (4.50) that the perturbation 77 is of the form, 

(4.50) 

(4.51) 

(4.52) 

(4.53) 

where, 

Given the above construction, the desired sensitivities can be written in the form, 

(4.57) 

(4.58) 

where evaluation on p 1 , l j 2 f  and $ = 0 is implied. The specific terms in these expressions for 
/c2 and H$ are derived in the Appendix. 

5 SIMULATION EXAMPLE 
A simulation example is given to  demonstrate the calibration of the MIPS 24 um array. Simu- 
lation is performed using FLUTE (FiLter Unit Test Environment) which is a tool specifically 
designed to unit test the IPF filter [2]. For this test, a 10 percent plate scale error is inten- 
tionally introduced to aid error visualization. 

The experiment design calls for the commanding of a 7 by 3 grid of observations shown in 
Figure 5.1, where each row of 3 uses a separate sandwich maneuver. At each point in a row 
the spacecraft attitude is fixed, and there are six scan mirror offsets which move the source 
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3 positions up and 3 positions down in 25 arcsecond increments (some of which fall off the 
array and are not recorded). 

The effect of the large plate scale error is seen in a-priori predictions shown in Figure 5.2. 
After filter convergence, the centroids are attitude corrected on a maneuver-by-maneuver 
basis, and the resulting centroids are plotted in Figure 5.3. The a-posteriori RMS centroid 
error is approximately .4 arcseconds (1-sigma, radial) which agrees well with the actual 
centroiding error used in the simulation having a value of .35 arcseconds. The estimated Prime 
frame and Inferred frames are depicted by the small window symbols (some are obstructed 
by the data). The innovations of the filter is shown in Figure 5.4 (w-axis only, the v-axis is 
similar). As expected the 1-sigma bound on the residuals approaches a steady-state value, 
and the innovations are well behaved with respect to this bound. 

The sizes of the corrections applied for re-linearization (on a parameter by parameter 
basis) are shown as a function of the iteration number in Figure 5.5. It is seen that the filter 
has converged in approximately 8 iterations (i.e., re-linearizations) . 

After the filter has converged with respect to the nonlinear iterations, the 1-sigma bounds 
are plotted as a function of maneuver number in Figure 5.6. It is seen that a large amount 
of information is in the first 5 maneuvers, after which the errors decrease at a slower rate. 
This type of plot provides a useful covariance analysis for determining how many calibration 
maneuvers are needed. 

The contribution of the thermomechanical drift to the final error is shown in Figure 5.7 
as fitted to  a quadratic, and the contribution of the gyro drift is shown in Figure 5.8, as fitted 
to a straight line. 

The 1-sigma a-posteriori bounds are shown in Figure 5.10 along with the actual errors 
(this plot is possible because the true parameter values are known from simulation). The 
symbol key for this plot is given in Figure 5.9. As expected the actual errors lie within a 
few sigma of their a-posteriori bounds. The 1-sigma errors in three rotation angles (el, 02, 0,) 
associated with the IPF frame T are given by (31, .035, .043) arcseconds, respectively. This 
gives a radial error of .055 arcseconds which meets the requirement of 0.14. 
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Figure 5.9: IPF Symbol Table 
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A APPENDIX: Sensitivity Calculations 

A. l  2 Derivation 
Starting with equation (2.8), the partial derivative of z with respect to s can be calculated 
as. 

^ ^ ^ A ^  

where, 
S = N-t = CTRGAOC 

A.2 Derivation 

Equation (4.49) can be rearranged to give, 

s = ( I  - T f )  N e  = N-t - q x N e  

= N e + ( N e ) ” v  (A.4) 

where the vector cross product property has been used (-a x b = b x u) .  Taking the partial 
derivative of (A.4) with respect to q gives, 

as 
H - - = ( N e )  ” = (CTkGAol) 

- aq 

A.3 Derivation 
Starting with equation (4.53), the partial derivative of q with respect to X can be calculated 
as, 

( A 4  H - - = [ I  877 C CF C f ’ k ] .  
- ax 

Equation (A.6) is the most general expression. However, since sensitivities with respect to I& 
are only needed for the MIPS instruments (which have scan mirrors), and since sensitivities 
with respect to & are not needed for the PCRS sensors (which define the TPF frame), 
the actual value of H,, will be calculated differently depending on which array the specified 
centroid was taken on, i.e., 

[ I ,  C, CT, Cf’k] for MIPS 
[0, I ,  CT, Cfk] 
[o, 0, C?, C?i] for PCRS 

for non-MIPS 
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A.4 & Derivation 

Given X = [ c k  Ok $k g k  I T ,  it is convenient to decompose the sensitivity of x with respect 
to Sp2 into the following matrix, 

where, 

H, 0 0 

0 O H 4 0  
0 0  O H ,  

(A.9) 

(A.lO) 

( A . l l )  

(A.12) 

The quantities H,, Ho, H4, Hg will be calculated next. 

A.4.1 Scan Mirror Axis Sensitivity H, 

Consider the perturbation on the scan mirror rotation given in (4.41) as, 

c= ( r - c ; ) C  (A.13) 

Based on a result found in [3] (cf., Angle-Axis Perturbation), the perturbation c k  in (A.13) 
can be written as, 

where r k  is I? at the k’th centroid time T k ;  ,8 is the nominal scale factor; and 6 E R3 is 
the nominal mirror axis. In general, the misalignment on the scan mirror axis Sa E R3 
has two degrees of freedom corresponding to in-plane and out-of-plane errors. However, the 
out-of-plane error can be ignored because it manifests itself as a frame misalignment, and is 
estimated as part of T.  The remaining degree of freedom is the in-plane misalignment which 
can be parametrized as, 

6a = ha (ii) 6a (A.15) 
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where, 

h, (h) = 

Substituting (A.15) into (A.14) gives, 

- :] i t2  (A.16) 

(A.17) 

Consequently, the desired partial derivative of c k  with respect to Sa, Sp is, 

H ,  = [ ( s in j rk  I - (1 - cos j r , )  i i x )  h, (ii) xk ] (A.18) 

A.4.2 IPFo Alignment Sensitivity He 

It is seen from (4.42) that the variables Bk and SO represent the same physical perturbation 
of T .  Consequently, the partial a is a 3 x 3 identity matrix, i.e., 

He = 13x3 (A.19) 

A.4.3 TPF Alignment Sensitivity Hd 

The direction cosine matrix R is the mapping from the STA-defined Body frame to the TPF 
frame. It is parametrized in (3.9) as the following quadratic function of time, 

(A.20) 

where &, (and its equivalent quaternion q R )  corresponds to the initial alignment at time 
t = 0, and b,, e, are parameters associated with the time-varying alignment drift. 

Let Eo, b,, e, be perturbed about their current nominal estimates &, b,, e, by the pertur- 
bations 6ur, Sb,, be, E R3 according to, 

&(QR) = (1  - 6a,X)&o (A.21) 

b, = b, 4- Sb, (A.22) 

c, = &++eT (A.23) 

Substituting the perturbations (A.21)-(A.23) into (A.20) and rearranging gives (to first or- 
der) , 
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Sa, + S b , t +  - S c T t 2 ) x ]  [ I -  (* b,t+- ":',"I & (A.25) 
2 

where, 

The variable 4' is defined by evaluating $ ( t )  at the IC centroid time T' to give, 

(A.27) 

(A.28) 

(A.29) 

Hence, the desired sensitivity Hb is, 

H + = [ I  T k - I  % . I ]  (A.30) 

It  is noted that after the perturbations Sa,, Sb,, d c ,  are estimated, they are applied to  update 
the nominal parameters as follows, 

iio t (I-S&;)iiO (A.31) 

6, t i, +ai,  (A.32) 

In this manner the estimate of the initial alignment I$ (and its equivalent quaternion GR) is 
kept as a large angle quantity, while the time-varying drift is kept as a small angle. This is 
appropriate since time-variations are expected to be only a few arcseconds in size. 

A.4.4 Gyro Attitude Offset Sensitivity H g  

The true gyro offset G at centroid time 2'' can be written as, 

where Go is a nominal gyro offset provided by the gyro pre-processor. The quantity Go is 
computed by the gyro pre-processor by using a certain nominal rate estimate w&. (e.g., w& 
is taken as the first on-board correction, or some other reasonable estimate [3]). 
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Clearly the quantity y is not known. However, given that the true rate w is related to the 
approximate rate w k  according to, 

w = w h  + b, + c g  (A.35) 

(by definition of b, and c, in (3.12)) then as shown in [3], the quantity y can be parametrized 
linearly in b,, cb as, 

Y (Tk) = Hg (Tk) [ 2 ] (A.36) 

Hg (Tk) = [ Ab (Tk) Ac (Tk) ] (A.37) 

where the quantities Ab(Tk) and Ac(Tk) are obtained by integrating the matrix differential 
equations, 

(A.38) 

(A.39) 
Tk(A 

Here, the notation (.)I: denotes integration over the time interval t E [a, b];  t, denotes the 
starting time of the j ' th  maneuver; and T k  denotes the k'th centroid time. 

Tk ( A  
t 3  

( A b  = - (W;)' Ab + I)I With 1.c. Ab ( t j )  = 0 

(A,= - ( w ~ ) ' A C + t - I ) I  t 3  with I.C. A, (t,) = 0 

Since the b,, cg parameters are not known, perturbations Sb,, Sc, are defined such that, 

b, = 6, + Sb, (A.40) 

c, = tg + 6c, (A.41) 

Using the current nominal estimates &,,eg, an estimate 9 of y at the centroid time T k  is 
defined bv. 

(A.42) 

A corresponding estimate of G is defined by, 

G ( T k )  A ( I  - 9 ( T k ) ' )  Go ( T k )  (A.43) 

This estimate is used in the measurement equation to form the prediction. Combining (A.34) 
and (A.43) yields (to first order), 

G(Tk) = I - Y(Tk)  - T(Tk) (A.44) 

By comparing (A.44) with the definition of gk in (4.44) it is clear that the relation between 
gk and 

( (  ) ") 
is given (to first order) as, 

(A.45) 
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where (A.36) has been subtracted from (A.42) to get the last relation. It is seen from (A.45) 
that Hg is the desired sensitivity function and its formula is given by (A.37). 

only once (by numerical integration of (A.38) and (A.38)) and stores the results. These quan- 
tities are then used in the prediction equation (A.43) and the sensitivity equation (A.45) at 
each centroid time TI, and during each filter cycle. The gyro pre-processor is discussed in 
more detail in [3]. 

For computational savings, the gyro pre-processor computes the quantities { G”(Tk), H,(TI,)) 

B CONCLUSIONS 
The IPF Kalman filter algorithm has been described, which has been specifically designed 
for calibrating the SIRTF telescope focal plane. The main novelty of the filter design lies in 
its ability to handle a large variety of array types (cameras, arrays with scanning mirrors, 
spectroscopy slits, etc.) in a single formulation, and in its combining both science array 
and attitude parameters in the same filter. The IPF filter has many features which are 
not covered here due to space limitations, but are described in the algorithm document [3]. 
The IPF filter will be executed over 60 times on separate data sets during SIRTF’s In-Orbit 
Checkout period, where it will be used to calibrate over 1200 hundred parameters and over 
60 different Prime and Inferred frames. These frames and calibration parameters will play a 
key role in supporting SIRTF’s in-flight precision pointing capability, and for ground pointing 
reconstruction efforts. 
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