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I. INTRODUCTION AND DEFINITIONS 
We generalize the notion of a low density parity check 

(LDPC) code by allowing its variable or check nodes to rep- 
resent codes more general than repetition or single parity 
check codes. We connect a multitude of small and easily 
(soft-)decodable codes {et, i = 1,. . . , Q} in a large network. 
Each component code C, is an atomic  code, and the large code 
formed by the network of Q atoms is a molecular code. An 
atomic code C,(n,,lc,) with length n, and dimension I C ,  has 
b, n, bonded edges emanating from its network szde and 
c, 5 nz charged edges on its channel szde. An atom’s charged 
and bonded edges correspond to  subsets of its 12% code sym- 
bols. Atoms can be uncharged (c, = 0), but unbonded atoms 
(b,  = 0) are uninteresting. Every bond joins two atoms and no 
pair of atoms is joined by more than one bond. Each bond im- 
poses one additional constraint beyond the nE - I C ,  constraints 
imposed by the i th  atom. A generic diagram of a molecular 
code is shown in Fig. 1. 

Channel cs.o cs.o 
Side 

Figure 1: A molecular code with Q atoms. 

11. A MOLECULAR CODE’S LENGTH AND RATE 
The minimum dimension of the molecular code is K = 

K+ - B,  where K+ = IC, is the total dimension of its 
atoms and B = Et”=, bi /2  is the total number of its bonds. 
The molecular code’s length is N = E:=, ci, the total charge 
of its atoms. 

The minimum rate of the molecular code is R = K / N  = 

average rate of all atoms, ,B = ( C i = l b 8 ) / ( C i = ,  Q Q ni) is the 
fraction of atomic code svmbols that are bonded. and ‘i. = (cy=, cz)/(Cy=, n,) is the fraction of atomic code symbols 
that are charged. As long as B < 2f, we can design any desired 
rate 0 < R < 1 for the overall code by independently adjusting 
the fraction 7 of code symbols connected to the channel. 
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111. A DESIGN EXAMPLE 
In Fig. 2 we connect via a bipartite graph q copies of a 

shortened Hamming code 7i(6,3) with 2q copies of a single 
parity check code SPC(3,2) to  produce two equivalent molec- 
ular codes of rate 1/6. One code is obtained by fully charging 
(ci = ni) the Hamming atoms, and the other by fully charg- 
ing the SPC atoms. In each case, all atoms are fully bonded 
(bi = nt).  The Hamming atoms are bonded randomly to the 
SPC atoms, with no pair of atoms bonded by more than one 
edge. These two codes are equivalent because charge from the 
channel propagates to each of the B bonded edges, regard- 
less of which side of the bipartite graph is charged. Bipar- 
tite molecular codes are like Tanner’s original graph-theoretic 
code constructions [l], but generalized to allow vertices on 
both sides of the graph to represent arbitrary small codes, as 
in the expander code constructions of Barg and Zemor [2].  
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Figure 2: Examples of bipartite molecular codes. 

IV. ITERATIVE DECODING 
An iterative decoder for a molecular code sends extrinsic 

a posteriori probabilities (APPs) between bonded atoms in the 
same way as decoders for LDPC codes. Each atom computes 
its APPs by enforcing its own parity constraints jointly, e.g., 
by running the BCJR algorithm [3] on the atomic code’s trel- 
lis. The iterative decoding threshold for the codes in Fig. 2 
was found by Gaussian density evolution [4] to occur at a 
bit-signal-to-noise ratio Eb/No of approximately 0.2 dB on an 
additive white Gaussian noise channel. This is much better 
than the threshold for a (5,6) regular LDPC code but still more 
than 1 dB higher than the capacity limit for rate-1/6 codes. 
Irregular molecular code constructions may reduce this gap. 
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