
Learning and Planning for Mars Rover Science 

Tara Estlin, Rebecca Castano, Robert Anderson, Daniel Gaines, 
Forest Fisher, and Michele Judd 

Jet Pro ulsion Laboratory 

Tara.Estlin @ iul.nasa.gov 
5 California P nstitute of Technolo y 

4800 Oak Grove Dr., Pasadena CA 1109 

Abstract unknown environments where unexpected conditions can 

With each new rover mission to Mars, rovers are 
traveling significantly longer distances. In some 
cases, distances are increasing by orders of 
magnitude from previous missions. This increase 
enables not only the collection of more science 
data, but causes a large rise in the number of 
new and different science collection 
opportunities. In this paper, we describe the 
OASIS system, which provides autonomous 
capabilities for dynamically pursuing these 
science-collection opportunities during long- 
range rover traverses. OASIS utilizes techniques 
from both machine learning and planning and 
scheduling to address this goal. Machine 
learning techniques are applied to analyze data 
as it is collected and quickly determine new 
science tasks and priorities on these tasks. 
Planning and scheduling techniques are used to 
alter the rover’s behavior so new science 
measurements can be performed while still 
obeying resource and other mission constraints. 
In addition to describing our system, we also 
discuss how we are testing OASIS, including the 
use of Mars rover prototypes and validation 
using data gathered from expert planetary 
geologists. 

1 Introduction 
As planetary exploration continues to increase, the use of 
robotic vehicles to explore and analyze planet surfaces 
will also expand. The Mars Pathfinder mission not only 
demonstrated the feasibility of sending rovers to other 
planets, but displayed the significance of such missions 
to the scientific community. The Mars Exploration 
Rovers (MER) mission is set to launch this year, and will 
send two new rovers to the Martian surface. 
Furthermore, additional rover missions are already 
planned to the red planet, which will provide major leaps 
in smart, surface laboratory measurements. With each 
new mission, rovers are able to travel significantly longer 
distances and collect increasing amounts of valuable 
science data. However, they must perform this task in 

easily be encountered. The Pathfinder rover traveled 
approximately 100 meters during its 90 day lifetime 
[Mishkin, et al., 19881. In contrast, the MER rovers will 
travel up to 100 meters per day, and future missions will 
likely continue to extend this measure. Though longer- 
range traverses enable rovers to explore new territory and 
collect large volumes of data, they also place increasing 
demands on operating these missions. Collected images 
and other science data must be analyzed (typically on 
earth), and this process must be performed quickly if that 
data is used to direct additional science measurements by 
the rover. Furthermore, rover operations for both 
Pathfinder and MER are handled by manually creating 
sequences of rover commands on the ground and then 
uploading them to the rover. This process is very time- 
and labor-intensive and does not allow for the dynamic 
adjustment of rover behavior if anything unexpected 
occurs, including faults and new science opportunities. 

This paper describes the Onboard Autonomous Science 
Investigation System (OASIS) [Castano, et al., 20031, 
which is directed at providing autonomous capabilities 
for rover science operations during long-range traverses. 
In upcoming missions, rovers will traverse many 
kilometers between pre-designated science sites. OASIS 
was developed to support science data analysis and new 
science collection during these long traverses. OASIS 
consists of several modules, including: 1) a data analysis 
system that uses machine learning techniques to analyze 
collected data and produce new science collection goals 
and 2) a planning and scheduling system that 
dynamically incorporates new science goals into the 
current rover command sequence and interacts with the 
onboard control software to achieve this goal. This 
system is currently being tested on data collected during 
test operations for the MER mission as well as with the 
Rocky 8 rover, a research rover built and supported at 
JPL. 

Science data analysis in OASIS is performed using 
several different machine-learning techniques, which can 
prioritize acquired science data for downlink to earth and 
create new science goals for the rover to achieve. This 
paper concentrates on the latter capability of creating 
new science goals. More information on prioritizing data 
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Figure 1. Overview of OASIS system architecture. OASIS consists of three major components: Feature Extraction, Data Analysis/ 
Prioritization, and Planning and Scheduling. 

for downlink can be found in [Castano, et al.,  20031. 
Three different prioritization methods have been 
developed for OASIS. All use extracted rock features to 
rank rocks in terms of scientific importance. The first 
technique, target signature detection, recognizes pre- 
specified signatures that have been identified by ground 
scientists as data of high interest. The second technique, 
novelty detection, identifies unusual signatures that do 
not conform to the statistical norm for the region. The 
last technique, representative sampling, prioritizes 
science measurements by ensuring data is collected on 
representative rocks of the traversed region. These three 
prioritization methods are used to trigger opportunistic 
science observations by identifying valuable new science 
opportunities that, if possible, should be taken advantage 
of during the rover's traverse. 

When science opportunities arise on a traverse, a 
planning and scheduling system is used to determine the 
necessary rover activities to achieve the new science 
goals. Based on an input set of prioritized goals and the 
rover's current command sequence, the planner generates 
a modified sequence of activities that satisfies as many 
new goals as possible while still preserving high-priority 
activities already in the sequence and obeying resource 
and other operation constraints (e.g.. such as ensuring 
there will be enough power to complete the day's 
activities). Our planner uses a continuous planning 
approach, where plans are dynamically modified in 
response to changing events and goal information. In this 
approach, the planner continually monitors the execution 
of commands on the rover and information on resource 
utilization and current states. It also accepts new science 
goals as they become available. As information is 
acquired regarding these items, the planner updates its 
version of the plan. From these updates, new problems 
andlor opportunities may arise, requiring the planner to 
re-plan in order to accommodate the unexpected events. 

The remainder of this paper is organized as follows. 
We begin by presenting the OASIS system, including 
characterizing the full architecture and presenting a more 
detailed explanation of the system components. We will 
then describe our testing plan for OASIS, which includes 

using Martian data from upcoming missions, as well as 
robotic vehicles developed at JPL. Finally, we will 
discuss related work and present our conclusions. 

2 OASIS System 
The OASIS system architecture is shown in Figure 1. As 
highlighted in the figure, OASIS is comprised of three 
major components: 

Feature Extraction: Enables extraction of 
features of interest from collected images of the 
surrounding terrain. This component both 
locates rocks in these images and extracts rock 
properties, such as shape and texture. 
Data AnalysisD'rioritization: Uses extracted 
features to assess the scientific value of the 
planetary scene and to generate new science 
objectives that will further contribute to this 
assessment. This component consists of three 
different prioritization algorithms, that analyze 
collected data, prioritize identified rocks, and 
generate a new set of observation goals to 
gather further data on rocks which were ranked 
high priority. 
Planning and Scheduling: Enables dynamic 
modification of the current rover command 
sequence (or plan) to accommodate new science 
requests from the data analysis unit. This 
component uses a continuous planning approach 
to iteratively adjust the plan as new goals and/or 
faults occur. 

OASIS operates in an autonomous fashion where the data 
analysis system can be seen as driving new science 
exploration. First, new science data is received by the 
Feature Extraction component. Currently, we have 
focused the system on analyzing rocks within \image 
data, but plan to expand to other types of data, such as 
spectrometer measurements. Images are broken down by 
first locating individual rocks in each received image, 
and second, by extracting a set of rock properties (or 
features) from each identified rock, Extracted rock 



properties are then passed to the Data Analysis 
component of the system. This component consists of 
three different prioritization algorithms, which analyze 
the data by searching for items such as pre-known 
signatures of interest, which have been identified by 
scientists on earth, or novel rocks (i.e., outliers) that have 
not been seen in past traverses. 

As shown in Figure 1, this analysis produces two main 
products. One is a set of prioritized images for 
transmission to Earth. Currently, spacecraft, such as 
rovers, can collect significantly more data than can be 
transmitted to Earth due to communication limits. OASIS 
ranks images by scientific importance so more valuable 
images get transmitted first for further analysis on the 
ground. This paper is focused on the second product, 
which is a list of new science measurement requests. 
OASIS uses the output of its three prioritization 
algorithms to dynamically produce a list of new science 
measurements that will take advantage of new and 
interesting data collection opportunities. In current rover 
missions, images and other science measurements are 
only sent to earth once or twice during the day. 
Furthermore, many images cannot be sent at all due to 
the communication restrictions mentioned above. This 
setup means that many valuable science opportunities 
may be lost. One problem is that by the time images are 
sent from Mars to Earth, analyzed on the ground by 
scientists, and a new set of measurement requests 
determined and sent back to Mars, the rover will likely 
have passed the object of interest. Another problem is the 
opportunity may never be recognized if the identifying 
data is never sent to Earth for analysis. By analyzing data 
onboard, OASIS enables these new science opportunities 
to be dynamically realized. 

New science measurement requests (or goals) are 
passed to the planning and scheduling module, which 
produces a modified set of actions in order to achieve as 
many new science goals as possible, without violating 
resource or other mission constraints. In current mission 
operations, rover behavior is directed by manually 
hardcoding sequences of commands on Earth and then 
uploading these sequences to the rover. Sequence 
changes are rarely performed onboard and if something 
unexpected happens, the rover must contact earth for 
further instructions. The planning and scheduling 
component addresses this problem by using a model of 
rover operations and constraints to dynamically modify 
the current rover plan in order to accommodate new 
science goals. This component can also monitor plan 
execution and continue to modify the rover command 
plan if other unexpected events or faults occur. 

Next, we discuss each of the OASIS components in 
more detail. 

2.1 Feature Extraction 
The first step in the OASIS system is analyzing rock 
features from images taken onboard the rover. As the 
rover traverses, it takes a series of images to support not 
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Figure 2. Examples of visual texture providing information 
about the geologic texture of rocks. (a) original image (b) 
image segmented based on texture. 

only science, but also navigation operations. Images may 
be taken from several different cameras to capture 
information on the surrounding terrain for science 
analysis and/or assist in path planning, obstacle 
avoidance, etc. Our initial emphasis in OASIS has 
focused on image analysis and the characterization of 
surface rocks. Rocks are among the primary features 
populating the Martian landscape and the understanding 
of rocks on the surface is a first step leading towards 
more complex regional geological assessments by a 
robotic vehicle. 

Rocks are located in the images by determining the 
ground plane from stereo range data, and then producing 
a height image and level contours for that image. These 
contours can be connected from peaks to the ground 
plane to identify rocks in each image [Gor, et al., 20011. 

Next, a set of properties is extracted from each rock. 
Our feature extraction priorities are based upon our 
knowledge of how a geologist in the field would extract 
information. Important features to look for and categorize 
include albedo (an indicator of rock surface reflectance 
properties), visual texture (which provides valuable clues 
to mineral composition and geological history), shape, 
size, color and arrangement of rocks. Currently our 



system identifies the first three of this set; future work 
will expand this to cover additional features. Each 
property or feature is measured using a different 
technique [Gilmore, et aL, 2000; Castano et al., 20021. 
For instance, visual texture is measured by computing 
gray-scale intensity variations at different orientations 
and spatial frequencies within the image. Figure 2 shows 
visual texture information produced from one sample 
image. 

2.2 Data Analysis and Prioritization 
The second step in the OASIS system is to use the 
extracted features to prioritize rocks. Three different 
prioritization techniques are used. The results from this 
analysis are then used to identify rocks that should be 
further analyzed and produce a new set of science 
measurement goals. 

Key Target Signature 
The first prioritization technique, key target signature, 
enables scientists to efficiently and easily stipulate the 
value and importance of certain features. Scientists often 
have an idea of what they expect to find during a rover 
mission and/or are looking for specific clues that reflect 
signs of life or water (past or present). Using this 
technique, target feature vectors can be pre-specified and 
an importance value assigned to each of the features. 
Rocks are then prioritized as a function of the weighted 
Euclidean distance of their extracted features from the 
target feature vector. 

Novelty Detection 
The second prioritization technique, novelty detection, 
detects and prioritizes unusual rocks that are dissimilar to 
previous rocks encountered. We have looked at three 
different techniques for novelty detection. First, we have 
developed a distance-based k-means clustering approach, 
in which a set of rocks are clustered and any new rock 
that is a great distance from any of the cluster centers is 
considered novel. In the second method, the probability 
density over the feature space for a set of rocks is 
approximated using a Gaussian mixture model. The 
novelty of a new rock is inversely proportional to the 
probability of that rock being generated from the learned 
mixture model. The third method uses a discrimination 
based kernel one-class classifier approach. We treat all 
previous rock data as the “positive class” and learn the 
discriminant boundary around that class. Future rocks 
with features falling outside the boundary are considered 
novel. An example of detecting a novel rock using data 
collected from rover field tests is shown in Figure 3. 
Representative Sampling 
In order to understand the region being traversed, it is 
important to have information on representative rocks, 
vs. very interesting or unusual rocks. To provide such an 
understanding, the third prioritization technique, 
representative sampling, uses a k-means clustering 
technique to cluster rocks into groups with similar 

Figure 3: Detection of significant novel rock. The marked rock 
is a piece of petrified wood that was discovered during rover field 
tests for the MER mission. This piece of wood was identified as 
novel by the OASIS system, however was not identified by the 
remotely located geologists during the rover tests. 

properties. For each class of rocks, this technique can 
find the most representative rock in the class (Le., the 
single rock in any image that is closest to the mean of the 
set) or rank rocks according to this metric. 

Science Alert 
Using the above determined priorities, the data analysis 
software can then flag rocks that should be further 
analyzed and produce a new set of measurement goals to 
further characterize the identified rocks. We call this 
capability science alert, since it alerts other onboard 
software that new and high priority science opportunities 
have been detected. The number of new goals produced 
by the data analysis software will vary depending on the 
constraints of the mission. Some missions may want 
only limited science alert capabilities, and thus new 
opportunities would only be flagged it they were deemed 
critical. Other missions may allow onboard analysis to 
direct a larger portion of planned science measurements. 

Science alert may also involve several different levels 
of reaction. OASIS has been designed so a spectrum of 
reactions can be supported. The most basic reaction is to 
adjust the rover plan so that the flagged data is 
immediately sent back to Earth for further analysis and 
the rover holds at the current position, delaying other 
tasks. The next step would likely be to collect additional 
data at the current site before transmitting data to earth. 
Further steps include having the rover alter its path to get 
closer to objects of interest before taking additional 
measurements and/or scheduling a close contact 
measurement (such as with a microscopic imager). These 
operations would provide new data that could not be 
obtained through image analysis alone. The level of 
allowed reaction will likely be determined by the 
constraints and goals of the rover mission. Reaction 



al., 20001. CASPER provides a generic planning and 
scheduling application framework that can be tailored to 
specific domains. Its components include: 

An expressive modeling language to allow the user 
to naturally define the application domain. 
A constraint management system for representing 
and maintaining domain operability and resource 
constraints. 
A set of search strategies and repair heuristics. 
A temporal reasoning system for expressing and 
maintaining temporal constraints. 
A graphical interface for visualizing plans. 
A real-time system that monitors plan execution 
and modifies the current plan based on activity, 
goal, state and resource updates. 

0 

0 

0 

0 

CASPER employs a continuous planning technique where 
the planner continually evaluates the current plan and 
modifies it when necessary based on new state and resource 
information. Rather then consider planning a batch process, 
where planning is performed once for a certain time period 
and set of goals, the planner has a current goal set, a current 
rover state, and state projections into the future for that plan. 
At any time an incremental update to the goals or current 
state may update the current plan. This update may be an 
unexpected event (such as a new science opportunity) or a 
current reading for a particular resource level (such as 
power). The planner is then responsible for maintaining a 
plan consistent with the most current information. And since 
things rarely go as expected, especially during planetary 
surface operations, the planner stands ready to continually 
modify the plan. 

Rover state in CASPER is modeled by a set of plan 
timelines, which represent the past, current and expected 
state of the rover over time. An example of a plan in the 
CASPER GUI is shown in Figure 4. As time progresses, the 

Figure 4: Sample rover plan displayed in planner GUI. Plan 
activities are shown as bars in upper portion of window. State 
and resource timelines are shown in bottom portion of screen. 

actual state of the rover drifts from the state expected by the 
timelines, reflecting changes in the world. State updates are 
relayed back from sensors and the rover control software. 
As these updates are received, CASPER updates the 
relevant timeline models with actual state values, resource 
values, activity completion times, etc. Each of these 
updates may introduce problems into the current plan, which 
cause CAPSER to perform plan modifications to bring the 
plan back into sync with the current state and set of goals. 

To produce and/or modify a current rover plan, 
CASPER uses an iterative repair algorithm [Zweben et 
al., 19941, which classifies plan conflicts and attacks 
them individually. Conflicts occur when a plan 
constraint has been violated where this constraint could 
be temporal or involve a resource, state or activity 
parameter. Conflicts are resolves by using one or more 
plan modifications such as moving, adding, or deleting 
activities. One example of a conflict is when a new 
science activity oversubscribes a resource such as power 
or memory. Possible resolutions to this conflict might be 
moving the science activity to a part of the plan that 
doesn’t oversubscribe that resource, deleting the science 
activity, or moving and/or deleting other contributing 
activities. 

Path Planning 
To provide spatial reasoning capabilities to CASPER, we 
are using a global path-planning module, which provides 
rover route information to the planner based on a map of the 
rover’s surrounding environment. This ,module is intended 
to give a global perspective of the rover’s anticipated path 
as opposed to the local perspective that would be considered 
by obstacle avoidance software. We are assuming that for 



Figure 5: P L  Rocky 7 and Rocky 8 rovers 

most rover operations some global map information would 
be available through orbital or descent imagery, or from 
panoramic imagery generated onboard the rover itself. We 
are also assuming this map information map be incomplete 
and certain terrain features and/or obstacles may be missing. 

CASPER queries the path planner for two main pieces of 
information. The first piece is estimated distances between 
science target or other designated traverse waypoints. The 
second piece is a list of intermediate-waypoint coordinates 
that can be used to direct the rover’s traverse to a particular 
targets. Path-distance information is used by the planner to 
estimate duration and power required for rover traverses 
between targets. Intermediate waypoints are used to track 
the rover’s progress during a traverse. To provide path 
planning information to our system, we are currently using 
the D* path planner, which produces paths in partially 
known or changing environments using an efficient and 
optimal algorithm [Stentz, 19941. 

3 System Testing 
We are in the process of testing the OASIS system using 
data gathered during rover tests for upcoming missions as 
well as using several JPL research rovers in the JPL Mars 
Yard. 

The data analysis component is currently being tested 
using a suite of image data collected during rover field 
experiments performed in Flagstaff, AZ. (These field 
experiments were done in preparation for the upcoming 
2003 MER rover mission.) One of the primary goals of 
using this data to test OASIS is to not only test our 
system on realistic data, but to also ensure that the 
prioritizations our algorithms produce are comparable to 
those made by planetary geologists. Our approach for 
testing is to gather sample prioritizations from expert 
planetary geologists on various collections of images. 
Expert rankings are input using a web-based application 
that enable experts from across the country to easily 
prioritize images and add explanations for their 
decisions. We are using statistical methods to combine 

these expert prioritizations and compare them with the 
prioritizations produced by our algorithms. 

The planning component has already been used in 
several tests [Estlin, et al., 20021 using two JPL rovers, 
Rocky 7 and Rocky 8, which are pictured in Figure 5. 
Rocky 7 is approximately the same size and mass as the 
1997 Mars Pathfinder rover, Sojourner. It employs a 
rocker-bogie six-wheel configuration, and is a partially- 
steered vehicle, where it only has steering capability on 
two corners. In contrast, Rocky 8 is roughly an order of 
magnitude larger than Rocky 7 and is similar in size to 
the twin MER rovers, set to launch later this year. Rocky 
8 also employs a rocker-bogie six-wheel configuration, 
however it is a fully-steered vehicle with all-wheel drive 
and all-wheel steering. 

The planner was used to produce an initial rover plan 
based on a set of science objectives (e.g., perform an 
image at location A, perform a spectrometer read at 
location B, etc.) and to dynamically modify that plan 
when unexpected events occurred (e.g., more power was 
required for a traverse or science activity than originally 
estimated). Tests were performed in the JPL Mars Yard. 
During these tests the planner interacted with the rover 
control software in several different ways. One, it 
dispatched commands from the plan for execution. Two, 
it monitored the success or failure of these commands. 
And three, it monitored a set of resource and state 
information including items such as rover position, 
power levels, and onboard memory levels. If unexpected 
events occurred, then the plan was dynamically revised to 
accommodate the new information. Note, that in these 
early tests all unexpected events were problematic (e.g., 
resources oversubscribed, traverses taking longer than 
estimated), and none corresponded to new science 
opportunities. 

The above-mentioned tests will be significantly 
expanded on this year, including 1) testing all 
components using real rovers 2) testing the online 
incorporation of new science goals, and 3) testing with 



additional real data sets gathered during rover traverses 
both on earth and Mars. 

4 Related Work 
The idea of having a scientific discovery system direct 
future experiments is present in a number of other systems. 
Work on learning by experimentation, such as IDS 
[Nordhausen and Langley, 19931 and ADEPT [Rajamoney, 
19901, varied certain quantitative and qualitative values in 
the domain and then measured the effects of these changes. 
OASIS differs from these systems in that it interacts with 
the environment to perform experimentation and it is 
specialized to particular problems and scenarios in planetary 
science. OASIS is also integrated with a planning system, 
which constructs the detailed activity sequence needed to 
perform new science 
experiments. 

Other work has used experimentation to learn from the 
environment but experiments again have not been 
scientifically driven. EXPO [Gil, 19931 integrates planning 
and learning methods to acquire new information by 
interacting with an external environment. However, while 
OASIS learns prioritization models of geological terrain 
features, EXPO tries to improve its planning-related domain 
knowledge. 

Several researchers have addressed methods for 
extracting features from data with the intention of 
performing the operations onboard a spacecraft. Gulick et 
al. [2001] presented methods for locating rocks in an image 
using information about the sun angle, identifying the 
horizon and recognizing layers. Gazis and Bishop [Gazis 
and Bishop, 20021 and Ramsey et a1 [Ramsey, et al., 20021 
have both looked at analyzing point spectra for mineral 
detection. There has also been work on developing a 
framework for feature extraction and event detection 
onboard Earth orbiting satellites (EVE) [Tanner, et al., 
20011. Our work has specifically focused on identifying 
and analyzing rocks in gray-scale images thus far and, in 
contrast to the work mentioned here, takes the next step of 
using the feature extraction to determine desirable 
additional actions a rover could autonomously take. 

A number of other systems have used planning methods 
to coordinate robot behavior. [Gat, 1992; Bonasso, et al., 
1997; Alami, et al., 19981. However, these systems generate 
plans in a batch approach where plans are generated for a 
certain time period and if re-planning is required, an entire 
new plan must be produced. In OASIS, plans are 
continuously modified in response to changing conditions 
and goals. The CPS planner, which is also directed towards 
rover operations, generates contingent plans, which are then 
executed onboard and can be modified at certain points if 
failures occur [Bresina, et a l . ,  19991. This planner takes a 
more limited approach then the OASIS planner, since the 
only plan modifications that can be performed during 
execution are those that have previously identified as 

possible change points. Furthermore, none of these systems 
has been integrated with a machine learning system that 
drives future plan goals. 

5 Conclusions 
This paper presents the OASIS system, which is being 
developed to support autonomous science operation 
during long-range rover traverses. OASIS integrates 
techniques from machine learning with planning and 
scheduling to dynamically analyze science data, request 
new science operations, and generate a new plan of 
action to support those requests. Often, in current rover 
missions, volumes of data are collected during rover 
traverses, however much of this data cannot be sent back 
to earth due to communication restrictions. OASIS 
enables this data to be analyzed onboard the rover and 
then used to determine new science measurement goals 
for objects of high interest. This system is currently 
being tested using several real rovers and using data 
gathered during rover field experiments. 
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