
03/18/03 1

I JavaOne 2003 I Session #

Learn an approach to fault protection
using Java and state diagrams.

I I

- . - -. - ____ - _ _ - - _. .-

0311 8/03 2

,

1 JavaOne 2003 I Session #

Ed Benowitz is a software developer at the
Jet Propulsion Laboratory
- Previous incarnations:

Java sustaining engineer for Sun Microsystems
Developer for Raytheon

- Over 6 years of Java development experience
- MS from UCLA

I

3

I JavaOne 2003 I Session #

Can we bridge the gap between
systems engineers and software
engineers?

Fault protection requires a very close coordination between
system engineering and software engineering. Is there a way to
bridge this gap? We'll investige this question as we explain our
approach to a fault protection implementation in Java.

0311 8/03 4

I JavaOne 2003 1 Session #

Introduction to Fault Protection in Space
Approach
Fault Detection
Response Design and Implementation
Response Scheduling

0311 8/03 5

I JavaOne 2003 I Session #

Hardware and software failures
Automatically take appropriate measures
Tight interaction between
- System engineering
- Fault protection subsystem
Can we implement it in Java?

Fault protection is a necessary functionality for spacecraft
Can we implement it in Java?
In inter-planetary missions, can't fix hardware, and difficult to make
changes to software
Onboard fault protection needs to keep the spacecraft in a safe
state, even when faults occur. This typically needs to happen
without intervention from the ground.
To implement fault protection, the software engineer must work
closely with the system engineer.

03/18/03 6

I JavaOne 2003 I Session #

Pure Java implementation
Use of design patterns
Create reusable components

Base our work on Deep Space 1 and Deep Impact missions
Use pure Java
Re-architect using best practices in Object-Oriented development

Include design patterns
States pattern specifically

Code must remain independent from a particular mission
Create a set of reusable components

03/18/03 7

1 JavaOne 2003 1 Session #

~ ~~

Single-failure operation
Threshold
Responses

Engine
- State-charts

Single failure operation:
Capability is provided to recover from a single fault and continue
its mission. Multiple faults are handled sequentially, where only
one response is active at a time.
Other missions that have used this level of Fault Protection include
Gallileo, Mars Pathfinder, DS1 and Deep-Impact.
Several sets of reusable components

Threshold is used for detecting erroneous data, an
indication that a fault is present
Responses, implemented as state charts, provide a way to
deal with a previously detected faults. The state chart
notation, as we will see, is a convenient way for a system
engineer and a software engineer to communicate response
specifications

The engine is used to schedule responses, enforcing the single
fail operation regime. We will briefly touch on its capabilities

0311 8/03 8

I JavaOne 2003 I Session #

Persistently bad data may indicate a fault
Threshold component
- Tracks values over time, judges if highhow
Pu bl is h/su bscri be model for not if ications
Threshold implemented with States pattern

- ._ _..- - - - . __ - __ - - ._ - _--

The publish subscribe pattern can be used to listen to data, or to
listen for state changes. Quite similar to the idea of event handling
done in AWT, for example.
We'll now discuss how fault detection can be done via a threshold
component.
The threshold component itself is implemented with the states
pattern. We'll discuss this pattern a bit later.

9

I JavaOne2003 I Session#

High and low boundaries
Persistence
Confidence

High and low boundaries indicated the expected range of the data
Persistence indicates how long a data must be out of range before
we indicate a high or low value
Confidence indicates how long the data must be in-range before
we indicate that the value is nominal again

03/18/03 10

I JavaOne 2003 1 Session #

Theshold vs Time
12
1 1
10
9
8
7
6
5
4
3
2
1
0

* Source Please copy and
paste a8 fl aligns wth the
grey llne below

Data value changes over time
At some point cross a threshold
If the data is above the threshold value for a given amount of
time(which is stored in a persistence variable), then the state of
the threshold component is declared high.
Similarly for low

0311 8/03 11

I JavaOne 2003 I Session #

Theshold vs Time

+ Sourca Please copy and
paste as n aligns mth the
grey line below

Data value changes over time
This time the data changes from being high to eventually nominal
If the data is below the threshold for a certain amount of
time(indicated by the confidence variable), then we report a
nominal value

03/18/03 12

I JavaOne2003 I Session#

public interface Threshold

c
public void changeparameters(

double min, double max,

int confidence,int persistence,

int decay);

public boolean issigh();

public boolean islow();

public void update(doub1e value);

I

Simplified interface
Decay is used to determine when to reset internal history
Publish/subscribe mechanism not included here
Reflects the parameters we discussed previously
Update is called when the value being watched has changed
Decay indicates how long we should wait before erasing the
counts of history

0311 8/03 13

I JavaOne 2003 I Session #

Symptoms Faults Responses

Once a threshold detects that a value is high, we declare that a
symptom exists. A symptom is some indication of a malfunction.
Based on symptoms, the fault protection system acts as a doctor,
and determines the likely underlying cause of these symptoms.
This is known as the fault.
Once the fault is determined, the subsystem then executes the
appropriate response in an attempt to deal with the fault
There is a built-in mapping between symptoms and faults and
between faults and responses.

0311 8/03 14

I JavaOne 2003 I Session #

Interaction with the system engineers
Need clear communication
Need common language

. __ - - - . - .- - -_ - - - ..__

Responses depend heavily on input from system engineers

0311 8/03 15

9 t €0/8 1/60

I JavaOne 2003 I Session #

Advantages
- Precise specification
- Visual representation
- Easy for system engineers to analyze
- Possibility of auto-coding
- Debug the design before coding

Auto coding was in fact done for both DSl's state charts and Deep
Impact. DS1 flew in space with all of its fault protection responses
auto-coded from state charts.
Designers could exercise the state charts in Matlab's StateFlow
beforehand.
Auto-coding for Java is a possibility, but it was outside of our
scope for the time being

03/18/03 17

I JavaOne 2003 I Session #

Stateflow state-charts can express
- States, which can be composed
- Transitions
-Code blocks

Entry
Exit

Composition is a useful abstraction for working with large systems
Although not traditionally used in say, the finite state
automata of compute science theory

In state composition,an entire state machine is embedded within a
parent state
Child state machine runs when its parent state is active.
Each state can specify a block of code to be run on exit, entry, and
during.

0311 8/03 18

I JavaOne 2003 I Session #

interface Colorstate

{ public void doAction0;

public void doAction({ }

1
Colorstate current-color = new Redo;

current-color.doAction0;

current-color = green;

current-color.doAction0;

_. . . _ _ - .- - ___ -

Avoid the problems with switch statements
Forgetting a break
Adding a new state requires going through all functions

No need to assert(fa1se) at the end of a switch
finding the right place to insert a new case

Easy to extend
Clearly separates each state into its own implementation class
States as objects

0311 8/03 19

I JavaOne 2003 I Session #

tonExi t (J
tdurinoll
tgetpakent 1 1 : Hierarchicalstate
tactivate1previous:HierarchicalState)

n

tsetrni tialChild(ini tial ;HierarchicalSta te

For this slide, hierarchy refers to composition, not inheritance.
Each state will override onEntry, onExit,and during
Activate method handles the book-keeping of calling the proper
methods at the proper times
Clear mapping between a statechart and a Java Object
Users would typically subclass Leafstate
Another valid approach would be to explicitly make transitions
themselves objects. This is left as an exercise for the reader
For our case, states had typically 1 transition, or occasionally 2 so
the explict transitions as object was not chosen.

0311 8/03 20

I JavaOne 2003 I Session #

.
7-

StateX

For this particular implementation, variables stored across states
but local to a state chart are stored within a response
States are then given a reference to the response for context

0311 8/03 21

I JavaOne 2003 I Session #

public class Initstate extends

{ .
Leaf S tate

public void onEntry ()

response.incrementCounter0;
I

Shows the same state chart as previously, translated to Java

0311 8/03 22

I JavaOne 2003 I Session #

public void during()
I
if(response.getCount0 == 1)

statex.activate(this);
else if (response. getcount () ==

2)

1
statey.activate(this);

I

....... -. . . - - - - ~

03/18/03 23

I JavaOne 2003 I Session #

One response at a time
Responses can call other responses
Long-running response can pause
- Allow another response to interrupt it
Reusable i m plemen tat ion

___ - - - - - - - I - __ _- _._ -

Engine is derived from C++ version, credits to Garth Watney
Design remains identical

Needed to be identical to assist in the verification of the C++

Behavior matched C++ so well that a V&V bug detected by
version

NASA Ames in the Java version indicated an identical bug in
the C++ version
Except that responses are an interface in Java instead of an
abstract class as in C++

0311 8/03 24

1 JavaOne 2003 I Session #

Fault Protection can be implemented in Java
Java facilitates implementation of the states

State-charts transfer system engineering

Fault protection components can be reused

design pattern

knowledge to software

0311 8/03 25

I JavaOne 2003 I Session #

State-charts bridge the gap between
system engineering and software.

0311 8/03 26

0311 8/03 27

J
Sun's

0311 8/03 28

