
Modeling Defect Trends for Iterative Development

John D. Powell
John.Powell@jpl.nasa.gov

John N. Spanguolo Jr.
J0hn.N. Spagnuolo-Jr@jpl.nasa.gov

Caltech, Jet Propulsion Laboratory
4800 Oak Grove Drive

Pasadena CA 91 109-8099

Abstract

The Employment of Defects (EoD) approach to
measuring and analyzing defects seeks to identifi
and capture trends and phenomena that are
critical to managing software quality in the
iterative software development lifecycle at JPL.
The EoD approach uses defects as a source of
knowledge about a software system and its
iterative development in a manner that is
advantageous to the development team. Since, the
iterative software development lifecycle
necessitates the building of a system while
simultaneously learning about and gaining
understanding of the software system, some level of
defects can be expected due to incomplete
knowledge during development of various software
artifacts. The EoD approach not only seeks to
track defects to their eventual removal from the
system but to employ then as a means of measuring
and facilitating the concurrent learn-while-
building process.

1. Introduction

The waterfall life cycle is characterized by the full
and correct completion of each phase
(requirements, design, code and test) before
beginning the next phase. Conversely, the iterative
lifecycle seeks to complete the work in each of the
phases in increments. By iterating through the
requirements design code and test phases multiple
times the software artifacts of each phase evolve in
a far more concurrent fashion than the waterfall
lifecycle. Software artifacts include requirements
and design documents, code and its documentation,
test plans and test results.

The iterative software development lifecycle has
largely replaced the waterfall lifecycle throughout
the software industry. Development of a series of
parametric defect models that leverages predictive
models, like COQUALMO, [1,2] and additional
models and augmentations that specifically address
software development phenomenon in the iterative
development style are necessary to understand and
control defects in this environment. Development
of engineering models, including defect trend
models, for this iterative environment requires a
fundamental shift in the view of the role of defects
and defect repairs within the development
lifecycle. The treatment of defects within a
waterfall lifecycle is solely as an unwanted
byproduct of development. Conversely, an iterative
lifecycle’s approach to learning about a software
system while building it necessitates reliance, to
some degree, on the discovery of defects to
facilitate that learning. Thus, defects ate a
necessary development and management tool in the
iterative lifecycle. This new reliance on an item
(defects) that is ultimately detrimental to the
software system, if allowed to go unchecked,
demands rigorous management to ensure the
delivery of high quality software on time and
within budget. This paper describes a quantitative
analysis approach (EoD), based on specific
software metrics, to aid software projects in defect
management. The EoD approach calls for the
“employment” of defects to aid software
development as a form of in-process knowledge
acquisition about the system in addition to their
eventual removal. Employing defects within an
iterative style of software development seeks to
formally:

Make use of defects as a source of systematic
learning throughout the lifecycle by
formulating distinctions within the set of

mailto:John.Powell@jpl.nasa.gov
mailto:Spagnuolo-Jr@jpl.nasa.gov

defects and their characteristics and then
tracking and analyzing data regarding these
characteristics over time from past JPL
software projects through current and future
projects.
Capture the characteristics that account for the
developmental flexibility, which may benefit
or endanger (depending on their usage)
software projects developed in JPL’s iterative
style. Then, form baselines to discriminate
between the two possible effects
probabilistically. These include but are not
limited to proper deferment of defect repairs to
later lifecycle stages in an attempt to maximize
quality and minimize programmatic risks.
Operate in conjunction with existing predictive
defect models, such as COQUALMO, [3,4,5]
as a means of prediction across and within an
organizations multiple projects over time.

This defect approach augments the waterfall style
of predictive models like COQUALMO. Defect
measurement and analysis approaches that account
for the dispersion in the development team’s
learning from the requirements phase to all phases
and iterations of software development. Currently,
many software projects are forced to treat iterative
software development as a series of “mini-
waterfalls” for defect analysis purposes. This EoD
approach while useful fails to fully capture many
aspects of iterative software development such as
the cumulative affect (good and bad) of previous
iterations on the current iteration. Section 2
contains the rationale of the defect measurement
approach (EoD). Section 3 will offer a brief
discussion of the waterfall versus the iterative
software development lifecycle in the context of
defects and the EoD approach outlined in this
paper. Section 4 will discuss the reasons why the
“mini-waterfall” mapping is an incomplete defect
rationale and fails to capture the sufficientlcorrect
information in an iterative environment to enable
reliable predictors and goes on to show how the
employment approach to defects seeks to overcome
these barriers. Section 5 , is a detailed discussion of
the EoD approach and techniques. These measures
and techniques will be specifically related to
iterative development’s intentional propensity to
delay the full completion of software artifacts until
more is known about the system. Finally, section 6

summarizes the view of defects as a valuable
source of developmental feedback despite the
expectation that significant levels of defects will be
introduced as a result of developing software
iteratively.

2. The Rationale for EoD in the Iterative
Software Development Lifecycle

The rationale behind the EoD approach specifically
for phenomena of iterative software development
lifecycle is:

To allow cross project analysis of defect
trends.
Ultimately anticipate, the advantages and
disadvantages of iterative software
development with respect to defects.

While iterative software development has largely
become the standard development paradigm
throughout much of the industry, defect
measurements approaches often cling to
assumptions rooted in the waterfall development
paradigm. Thus, flexibilities inherent in iterative
software development are often not formally
addressed. When properly managed, incremental
flexibilities offer powerfbl advantages during
iterative software development. However when
abused or poorly managed those same flexibilities
can represent dangerous pitfalls. The EoD
measurement approach described in this paper
offers a means by which to manage the defect
occurrence and elimination process to the software
project’s benefit. The task of mapping waterfall-
like rationales to an iterative environment is left
for the analyst to informally perform on a case-by-
case basis. The informality and the case-by-case
nature of the mapping directly hinders an
organization’s ability to perform cross project
analysis of defect trends over time and thus the
ability to develop reliable leading indicators.

Some components of defect measurement must
begin before defects are even discovered in order
to effectively employ defects during iterative
software development to improve quality while
removing. Namely, tracking when software
artifacts are developed in both Regular Time and
Logical Time. Regular time refers to a calendar
date. Logical Time refers to the development phase

2

(requirements, design, code, test) and iteration
(iteration I , 2, 3 . . .) . These measurements can be
easily obtained if a relatively well-defined
configuration management process is in place.

When defects are discovered the characteristics of
the defect and its repair must be tracked. At a high
level these can be categorized as:
0 Where defects were found?
0 Where repairs were made?
0

0 When defect were discovered?
0

0

When artifacts were developed (See above)

When artifacts were repaired? (regular and
logical time)
What precipitated the defect? (Environmental
Change, New system knowledge, Previous
repair, system evolution, etc.. .)

These measures will be discussed in further detail
in section 5 along with non-exhaustive list of
recommended analyses that are available as a result
of taking these measures.

3. Waterfall verses Iterative Defect
Management

The waterfall life cycle’s paradigm of developing
requirements completely and correctly before
moving on to design and then developing a
complete and correct design before coding and
then testing allows defects to be defined and
managed in a straight forward manner. That is,
during any phase, any non-conformance to the
previous phase is defined as a defect because
artifacts for the previous phase are assumed to be
complete and correct. Management of defects in

. the waterfall lifecycle is a matter of elimination as
soon as possible because it is assumed that
complete information about the system at any
phase is already available from a previous phase.

Recall that software artifacts include requirements
and design products and documentation as well as
code and test results. Further iterative development
disperses learning throughout the development
process. (See Section 1) The assumption inherent
in an iterative software development lifecycle
differ from the waterfall lifecycle in a way that
make the definition of a defect less clear but
provides more flexibility in their management.
Further there is valuable utility in formally

examining and analyzing defects in the iterative
lifecycle before/during their removal. Since the
iterative lifecycle necessitates that the building of a
system begin using incomplete information the
developers must learn about the system in process.
Thus, the definition of defects is not clear.
Consider an artifact that is developed based on the
best available knowledge at the time. As new
information about the system is leamed (in
process) that artifact will have to be updated (or
corrected). Therefore, the line between a
subsequent round of evolution in the system and its
software artifacts and the repair of defects in
artifacts is blurred. Management of defects in the
fluid environment of iterative software
development becomes crucial. Fortunately the
iterative paradigm offers increased flexibility in
many areas, including defect management to deal
with this increased fluidity. For example:
0 Repair of defects may be deferred to a later

iteration, as opposed to being repaired as soon
as possible
Analysis of a defect can provide knowledge
about the system to determine whether a
newly developed portion of an artifact is in
error or an older (or higher level) artifact
needs to be correctedhpdated.

The need ’ to make correct defect management
decision will not only affect the technical quality
of the software but programmatic risks such as
cost an schedule as well. By formalizing the
tracking of an organizations experience with
respect to iterative software development
phenomena regarding defects though the EoD
approach, the software manger is afforded an
empirical basis for making and defending hisher
decisions.

0

4. Adjusting “Mini-Waterfalls” to True
Iterative Software Development

A strategy that many analysts employ in mapping
waterfall style approaches to iterative software
development in various domains is to treat the
iterations of an iterative effort as miniature
successive waterfall scenarios. This mapping often
entails numerous informal case-by-case
adjustments made based on the analyst’s intuitive
understanding and extensive experience in their
organization. While these approaches are

3

successhl at times the intuitive adjustments rest
with the analyst and not captured as part of the
organization’s knowledge base. Further, cross
project consistency becomes an issue for any
attempts at institutional analysis due to the case-
by-case tailoring of the mapping.

Defect

Defect Repair
Discovery (DD)

(DR)

Defective
Artifact’s
Repair (DAR)

The EoD approach is critically deficient with
regard to defect analysis due to the direct effects on
development and defect occurrence in a given
iteration caused by the previous iteration. Thus.
While a reasonably consistent set of assumptions
between the first iteration and a “mini-waterfall”
may sometimes be made, subsequent iteration
increasingly deviate from waterfall assumption due
to activity and inherited defect issues from
previous iterations. Although the notion of
inherited portions of a system may be
philosophically related to software reuse
assumptions the operational result is often quite
different. The EoD measurement and analysis

Logical Time Regular Time
(DDL) (DDR)

Logical Time Regular Time
(DRL) (DRR)

Logical Time Regular Time
(DARL) (DARR)

1 or more DARs per defect record

approach seeks to overcome these deficiencies by
directly targeting the trans-iteration defect
phenomena and using the result to a software
project’s benefit.

5. Employing Defect Measurement in the
Iterative Software Development
Lifecycle

The approach of employing defects, as opposed to
only removing, is an effort to use discovered
defects to a software development project’s
advantage by:
0 Utilizing defects as a source of in process

knowledge acquisition for the current project.
Referencing historical defect trends for use in
quantitative prediction of expected defect for
future projects.
Anticipating defect phenomena based on
historical baselines.

~~

Defect Record

I Defective
Artifact’s
Creation (DAC)

Logical Time Regular Time
’ I (DACL) I (DACR)

To (DDT)

Learning Defect
YESNO

Derived from DDL and DACL data

YESNO

Derived from DDL and DACR data
Regular Defect
(W

Defect Record
Linked/Related to the defect whose
repair introduced the new defect.

0 or more RRs per defect record

Related Repair

Table 1 Defect Record

5.1. Measurement for Defect Employment
Toward this end the EoD approach advocates a
series of necessary measures. (See Table 1) The
first measure is the Defect Artifact’s Creation
(DAC) in both logical (DACL) and regular (DACR)
time. DAC refers to the time when the artifact
where the defect is found was created. Thus, DAC
will be recorded prior to the discovery of defect. It
is the discovery of a defect that triggers the
creation of a Defect Record (See Table 1). At this
time the pre-existing DACL and DACR .values are
entered into the record as appropriate. A defect
record captures all the information relevant to a
given defect for this measurement approach.

Most configuration management (CM) systems
record a date of creation and change history that
can be used to obtain (DACR). DACL can either be
added as an item to record during development or
may possible be derived from CM information. If
the CM system contains a data item that can link an
artifact to a given iteration, version-numbering
protocols are sometimes usefbl, then breakpoints
for phase within an iteration may be derived from
the regular-time date of a major review/milestone
occurrence that traditional end a given phase for
the organization. Thus all artifacts developed
during a given phase could then be grouped and
identified. Defect Discovery (DD) refers to when

4

the defect was discovered in logical (DDL) and
regular (DDR) time. Similarly Defect Repair (DR),
Defective Artifact’s Repair (DAR) refers to when
(logical and regular time) the defect repair was
complete and when a repair to a give artifact was
completed. It is important to note that there may be
multiple DARs for one DR. Thus, the DAR times,
DARL and DARR, of the last artifact repaired would
be equal to DRL and DRR respectively because the
final DAR would complete the DR. If a defect’s
repair is deferred to a later phase/iteration of
development the Defect Deferred To (DDT) fields
would reflect the logical (DDTL) and regular
(DDTR) times when the defect repair is planned to
take place. While DDTL is recorded at the time the
decision to defer a defect is made DDTR is derived
later as the start of the phase in the fbture iteration
in which DR is planned. If a defect is not deferred
then the fields contain a null value. A Learning
Defect (LD) refers to a defect that requires artifacts
that were develop in previous iterations or phases
to be repaired. Thus, the value of the LD field is
implicit in that it can be derived from DD and
DAC using the rule:

Within a single defect record
if
(yDACI) earlier-than DDI)
then
LD = Yes
else
LD = N o

Similarly, Regular Defect (RD) is also implicit and
obeys the rule:

Within a single defect record

(TDACJ earlier-than DDJ
then
RD =No
else
RD = Yes

if

This rule states that RDs are defects where only
artifacts that were developed in the current
phasehteration need be repaired. It is believed that
LDs are associated with a higher probability of the
existence and number of Related Repairs (RR) than
RDs. RRs are records of new defects discovered as
a result of repairs associated with the defect in the
current defect record. Therefore, the RR field(s)

would be filled in (added to) after the defect in the
current record has been repaired. Ifmhile no RRs
exist the field contains a null value.

5.2. Analysis for Defect Employment
Recall from section one that, in addition to defect
tracking and removal, defect employment seeks to:
0 Make use of defects as a source of systematic

learning throughout the iterative lifecycle.
0 Capture characteristics pertaining to

developmental flexibility in JPL’s iterative
software development lifecycle and establish
statistical rules and thresholds to maximize
benefit and minimize dangers.

0 Leverage existing technology/models for
defect prediction such as the COQUALMO
defect prediction model.

The measures discussed in section 5.1 were
formulated specifically for these purposes. This
section presents opportunities for analysis of the
proposed metrics to achieve the stated goal above.

5.2.1. Defects as a Source of Learning
During iterative software development defects
discovered in artifacts being developed in the
current phase may prompt changes in artifacts
developed in previous phases and iterations. This
situation may be precipitated by one of two
phenomenon 1) the previous artifact idwas
defective despite sufficient knowledge to avoid the
defect in question or 2) the previous artifact was
developed “correctly” based on information
available at the time; information that latter
(currently) has been learned to be incomplete or
incorrect. In the initial stages of this effort at JPL
defects resulting from the situation above will be
considered part of one category (LD). Investigation
to determine which of the two cases above a caused
the defect is not feasible as an in process activity
by developers during development. However
discrimination by an independent source or as a
postmortem effort can be used as a source of
information for root cause and process
improvement purposes.

The increased probability that artifacts will be
developed based on information that is incomplete,
incorrect or not fully understood is an inherent cost
of developing software in an iterative paradigm.
The result is often the discovery of defects in later

5

phasesliteration of software development. Knowing
this uncertainty exists and planning in order to
manage it is necessary for successfid development
of high quality software within programmatic
constraint. The EoD approach offers analysis to aid
in managing the uncertainty accompanies
development of software iteratively.

4

Analysis includes the use of the DAC, DD, RR and
LD (implicit) measures. The first point for analysis
is to examine the relationship between the
defective artifact’s time of creation (DACL) and
repair (RR) and the time when the defect was
discovered (DDL). Since a DACL exist for each
RR performed in response to a defect discovery
and correcting one defect may require multiple
RRs, the earliest DACL associated with the defect
in question is used for this analysis. Then defects
are discriminated by DDL (defects in each
phaseliteration) where the DACL is earlier that DDL
implying the defect is an LD. Within the set of
LDs, a point system is derived where each
development phase between an injection (earliest
DACL) and discovery (DD,) of a defect is given a
value of one. Further an extra point is added to the
count whenever an Iteration Boundary is included
in the time span. An iteration boundary exists
between the test phase of one iteration and the
requirements phase of the next iteration. (See
Figure 1) Therefore, high scores in the point
system are associated with more development
based on a faulty foundation. This in turn raises the
likelihood that the repairs will be more expensive
and time consuming.

b
R D C T R D C

FI:
For each DDL = i

IDDL=i(

j=I
[Z(LDIi Points)] / IDDL=il

Graphically the metric for each DDL = i forms an

~

Figure 1: LDI Point System Example

160

140

120

r; loo

!, 80

f 60

40

20

0 , 1 2 3 4 5 6 7
It.r.tlon.

Figure 2: Ideal Average LDI Points Profile

X-axis corresponding to the time progression
though the phases and iteration of the software
development. The Y-axis represents the value of a
metric for each phase that expresses a combination
of the number and impact of LDs per phase. The
impact of an LD refers to the amount of software
development that has occurred between the
“insertion” of the defect and its discovery
measured here as the number of phases and
iteration occurring.

Ideally, one would expect low average LDI points
in early phasesliteratiom because little of the
system is developed and thus has a short history of
artifacts in which to find RRs. One can then expect
the average LDI points to increase dramatically in
following phases because details of the system are
becoming relevant causing a great deal of learning
to take place necessitating adjustments in previous
artifacts. Finally, Average LDI points should
ideally decrease in late phaseliteration of software
development because a good understanding of the
system should be in place and remaining defects
should be localized defects in new functionality.
(See Figure 2) If LDI point averages remain high
moving into later phases it is a leading indicator
that the current schedule andlor quality may be in
jeopardy .

A second analysis relates the LDI points of a defect
from the earliest DACL to DDL to the number of
RRs associated with that defect. The intuitively
expected result is that the number of RRs will be
positively correlated with LDI points at a high

6

level. This is because a trend of higher LDI points
indicates that more of the system has been built
based on defective assumptions from previous
phaseshterations. Therefore the number of software
repairs as a function of iteratiordphases will start
small in early phases/iterations increasing rapidly
in middle phases and leveling off in late phases.
(See Figure 3) The phenomena of the number of
defects stabilizing in late iterations despite
decreasing average LDI points is due to the
increased discovery of localized defects due to
end-of-development testing and “clean-up
development”. Clean up development refers to
items such as cosmetic enhancement of interfaces,
output formatting etc.. . that tend to produce RDs
as opposed to LDs but require repairs none the less.

5.2.2. Defect Management Flexibility Analysis
While defect as a learning source (Section 5.2.1)
focuses mainly on the period from defect insertion
to defect discovery with repair as a corollary,
defect management analyses are more focused on
the repair of the software after defect discovery.
However, the two issues are so closely related that
this organization may be regarded as a
philosophical issue more than a technical issue.
The analyses associated with defect management
and the flexibilities inherent in an iterative
software development lifecycle make use of the
DD, DR, DAR, DDT, RR, LD (implicit) and DR
(implicit) measures. The first two analyses relate
the time period from DD to DR accounting for
DDT periods to:
0 LDsVSRDs
0 NumberofRRs

The period from DDR to DRR represents the
traditional aging metric of defects. While useful,
this aging fails to account for various flexibilities
in defect management during development of
software in an iterative manner. Aging of defects
in the EoD approach considers the period from
DDL to DRL to account for various factors such as
overlap of phasediteration, as is common in an
iterative environment, non-sequential development
of a given functionality to completion or
environmental factors such as work stoppages. In
conjunction with the factors above, the Adjusted
Defect Removal Period (ADRF’) from DDL to DRL
minus the period of defect deferral (date DDT is

180

160

140 : 120

i loo

p
0
x m -

40

20

0
1 2 3 4 5 6

Iterations

Figure 3: Expected Number of Repairs

Recorded to DDTL), if it exists, during the overall
interval. Defect deferral represents time in which a
defect is purposely not addressed for strategic
reasons. Thus, removing it from consideration in
some cases gives a more accurate view of defect
repair effortiproductivity by considering only the
period where developers are burdened with the DR
task.

Prnfile

Examining average ADRP / defect broken down by
LDs and RDs over software development
phasehterations gives insight into productivity of
defect repair as the iterative software development
lifecycle progress. When combined with a
predictive technology for defects such as
COQUALMO this information can be used for
schedule planning purposes. A number of
competing factors contribute to the productivity of
defect repair including but not limited to:
0 The numberhiming of defects discovered

which is directly related to the amount of
testing, inspection etc.. .
The staffing level of personnel dedicated to
discoveringhepairing defects including shifts
in personnel during phases of the development
process.

0 The policy for deferring defect to later phases
iterations

At this time there is no clear justification for a
given expected profile of defect repair productivity
at JPL. However, current metrics efforts are,
among other goals, attempting to generate a
baseline profile and identify critical factors that
explain the phenomena in the profile(s).

0

7

When factoring the number of RRs into analysis of
DR productivity via the ADRP, the insight in to
DR offers additional insight into LDs. LDs with a
high number of RRs represent critical phenomena
that greatly inhibit the development of high quality
software on time and within budget. Thus, the
potential benefits of this type of analysis include
determination of software development process
weaknesses that offer high leverage for
improvement.

I 1

Finally, by tracking DARs and their association
with defects overtime, a measure of the amount and
rate of change a given artifact undergoes may be
examined. This allows software development
personnel to target problem portions of the
software system for:
0 Additional scrutiny in process to resolve

problems at the earliest possible time.
0 Trend analysis over time to guide software

managers in planning additional verification
activity and resources in areas that are
traditionally troublesome for the organization

0 Identify areas for process improvement to
preemptively address persistent software
development problems.

5.2.3. Defect Prediction in the Iterative Lifecycle
In conjunction with the EoD approach and the JPL
Software Quality Improvement Project’s cost
estimation efforts, defect data is being categorized
in terms of requirements, design, code and test,
along with the COQUALMO drivers, for both the

100.00%
90.00%
80 00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%
0.00%

-0- Project B
+Project C

I
Req Dsgn Code

I

Figure 4: Predicted Defect Introduction
from COQUALMO

-

100.00%
90.00%
80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
1000%
0.00%

+Project B
+Project C
+Project D

Req Dsgn Code

Figure 5: Defect Discovery at System
Test

EoD approach and the COQUALMO defect
prediction model. [6] The new approach here
augments COQUALMO by adding an iterative
dimension to the data that COQUALMO currently
lacks. The employment of defect approach offers
the ability to investigate defects within the iterative
development paradigm and COQUALMO offer
predictive capabilities. Conversely, COQUALMO
offers predictive capabilities that are currently
lacking in the EoD approach discussed in this
paper.

Future work at JPL will yield a base of defect data
that has the potential to relate COQUALMO to
JPLs specific iterative phenomena. Defect data
collected over JPL past projects’ records from
integration testing show a significant correlation
with COQUALMO’s prediction defect introduction
on a percentage basis. (See Figures 4 and 5) The
combination of defect employment in the iterative
lifecycle with COQUALMO defect prediction will
allow increased predictability using information
that can be more readily estimated during initial
stages of project planning. The resulting benefits
will include better control over uncertainties
pertaining to defect occurrence and management.

6. Conclusion

The EoD approach to measuring and analyzing
defects identifies trends and phenomena that result
from the use of an iterative software development
lifecycle. In particular the effects, from a defects

8

standpoint, from / between one development
iteration and the next are examined. Trend analysis
is used to provide software managers with
quantitative data to aid in ascertaining the status of
the software during a given iteration as compared
to historical experience. Further, in conjunction
with predictive models such as COQUALMO, the
EoD approach will allow a software manager to
anticipate likely defect phenomena (rates, repair
effort etc.. .) based on information gained from the
defects themselves in early software development
iterations.

e ct was carried

7. Acknowledgement

The research described in this
out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

8. References

[I] Barry Boehm et al., Software Cost Estimation with
COCOMO 11, Prentice Hall Inc., Upper Saddle River,
NJ 07458,2000
[2] Sunita Devnani-Chulani, Bayesian Analysis of
Software Cost and Quality Models, Ph.D. Dissertation,
University of Southern California 1999
[3] Sunita Devnani-Chulani and Barry Boehm,
Modeling Software Defect Introduction Removal:
COQUALMO (Constructive QUALity Model), USC-

[4] Sunita Devnani-Chulani, Modeling Software Defect
Introduction Proc. California Software Symposium ‘97,

[5] Sunita Devnani-Chulani, Incorporating Bayesian
Analysis to Improve the Accuracy of COCOMO I1 and
Its Quality Model Extension, USC-CSE-98-506
[6] Sunita Devnani-Chulani, Results of Delphi for the

Defect Introduction Model (Sub-Model of the
CostIQuality Model Extension to COCOMO 11) USC-

[7] John D. Powell, An Early Look at COQUALMO in
the JPL Environment, 17th International Forum on
COCOMO and Software Cost Modeling, , Los Angeles
CA, 10l22l2003

CSE-99-5 10

USC-CSE-98-503

CSE-97-505

9. Biographies

John D. Powell holds a M.S. in Computer Science
from West Virginia University and is a software

quality assurance researcher at the California
Institute of Technology’s Jet Propulsion
Laboratory (JPL) in the Quality Assurance office.
Currently he performs research in the area of
Quality/Cost Estimation and Prediction as well as
Formal Methods research for efforts at JPL. Prior
to his work at JPL/USC, John worked as a System
Software IV&V Analyst for NASA’s prime IV&V
contractor (Titan-Averstar) performing IV&V
analysis on the Redundancy Management and
Control systems for the Space Shuttle’s Checkout
Launch and Control System (CLCS). Prior to that,
at the NASA Goddard IV&V Facility, John
performed research under the Intelligent Systems
Initiative exploring alternatives to traditional
model checking in conjunction with West Virginia
University’s Software Research Laboratory (SRL).
His publications include a master thesis, papers at
ICSE, Trans. on SE, CSEE&T, ISRE, IEEE
WETICE, ISPA and various NASA
Conferences/Workshops and technical reports.

John N. Spanguolo Jr. is a Senior Staff member
at the Jet Propulsion Laboratory / California
Institute of Technology in mathematics /
algorithm research. He graduated from
Clarkson College of Technology and
subsequently obtained an MA from the
University of California at Los Angeles. After
that he received a PhD from Rensselaer
Polytechnic Institute in Mathematics. While at
JPL, Dr. Spagnuolo has done work in artificial
intelligence, parallel computation (Time
Warp), coding theory, sensor modeling,
simulated annealing, look-ahead planning,
computer directed battle management, expert
systems, neural networks, clustering and solar
physics. He has won numerous NASA Tech
Brief Awards for Significant Contributions and
Publications and 2 Space Act Awards for
innovation in technology. His present research
interests include the merging of Kantian
philosophical inquiries into the nature of
human thought with computer graphics, neural
networks and other requisite mathematical
formalisms to simulate the reasoning process
on machines.

9

