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Abstract 

The Employment of Defects (EoD) approach to 
measuring and analyzing defects seeks to identifi 
and capture trends and phenomena that are 
critical to managing software quality in the 
iterative software development lifecycle at JPL. 
The EoD approach uses defects as a source of 
knowledge about a software system and its 
iterative development in a manner that is 
advantageous to the development team. Since, the 
iterative software development lifecycle 
necessitates the building of a system while 
simultaneously learning about and gaining 
understanding of the software system, some level of 
defects can be expected due to incomplete 
knowledge during development of various software 
artifacts. The EoD approach not only seeks to 
track defects to their eventual removal from the 
system but to employ then as a means of measuring 
and facilitating the concurrent learn-while- 
building process. 

1. Introduction 

The waterfall life cycle is characterized by the full 
and correct completion of each phase 
(requirements, design, code and test) before 
beginning the next phase. Conversely, the iterative 
lifecycle seeks to complete the work in each of the 
phases in increments. By iterating through the 
requirements design code and test phases multiple 
times the software artifacts of each phase evolve in 
a far more concurrent fashion than the waterfall 
lifecycle. Software artifacts include requirements 
and design documents, code and its documentation, 
test plans and test results. 

The iterative software development lifecycle has 
largely replaced the waterfall lifecycle throughout 
the software industry. Development of a series of 
parametric defect models that leverages predictive 
models, like COQUALMO, [ 1,2] and additional 
models and augmentations that specifically address 
software development phenomenon in the iterative 
development style are necessary to understand and 
control defects in this environment. Development 
of engineering models, including defect trend 
models, for this iterative environment requires a 
fundamental shift in the view of the role of defects 
and defect repairs within the development 
lifecycle. The treatment of defects within a 
waterfall lifecycle is solely as an unwanted 
byproduct of development. Conversely, an iterative 
lifecycle’s approach to learning about a software 
system while building it necessitates reliance, to 
some degree, on the discovery of defects to 
facilitate that learning. Thus, defects ate a 
necessary development and management tool in the 
iterative lifecycle. This new reliance on an item 
(defects) that is ultimately detrimental to the 
software system, if allowed to go unchecked, 
demands rigorous management to ensure the 
delivery of high quality software on time and 
within budget. This paper describes a quantitative 
analysis approach (EoD), based on specific 
software metrics, to aid software projects in defect 
management. The EoD approach calls for the 
“employment” of defects to aid software 
development as a form of in-process knowledge 
acquisition about the system in addition to their 
eventual removal. Employing defects within an 
iterative style of software development seeks to 
formally: 

Make use of defects as a source of systematic 
learning throughout the lifecycle by 
formulating distinctions within the set of 
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defects and their characteristics and then 
tracking and analyzing data regarding these 
characteristics over time from past JPL 
software projects through current and future 
projects. 
Capture the characteristics that account for the 
developmental flexibility, which may benefit 
or endanger (depending on their usage) 
software projects developed in JPL’s iterative 
style. Then, form baselines to discriminate 
between the two possible effects 
probabilistically. These include but are not 
limited to proper deferment of defect repairs to 
later lifecycle stages in an attempt to maximize 
quality and minimize programmatic risks. 
Operate in conjunction with existing predictive 
defect models, such as COQUALMO, [3,4,5] 
as a means of prediction across and within an 
organizations multiple projects over time. 

This defect approach augments the waterfall style 
of predictive models like COQUALMO. Defect 
measurement and analysis approaches that account 
for the dispersion in the development team’s 
learning from the requirements phase to all phases 
and iterations of software development. Currently, 
many software projects are forced to treat iterative 
software development as a series of “mini- 
waterfalls” for defect analysis purposes. This EoD 
approach while useful fails to fully capture many 
aspects of iterative software development such as 
the cumulative affect (good and bad) of previous 
iterations on the current iteration. Section 2 
contains the rationale of the defect measurement 
approach (EoD). Section 3 will offer a brief 
discussion of the waterfall versus the iterative 
software development lifecycle in the context of 
defects and the EoD approach outlined in this 
paper. Section 4 will discuss the reasons why the 
“mini-waterfall” mapping is an incomplete defect 
rationale and fails to capture the sufficientlcorrect 
information in an iterative environment to enable 
reliable predictors and goes on to show how the 
employment approach to defects seeks to overcome 
these barriers. Section 5 ,  is a detailed discussion of 
the EoD approach and techniques. These measures 
and techniques will be specifically related to 
iterative development’s intentional propensity to 
delay the full completion of software artifacts until 
more is known about the system. Finally, section 6 

summarizes the view of defects as a valuable 
source of developmental feedback despite the 
expectation that significant levels of defects will be 
introduced as a result of developing software 
iteratively. 

2. The Rationale for EoD in the Iterative 
Software Development Lifecycle 

The rationale behind the EoD approach specifically 
for phenomena of iterative software development 
lifecycle is: 

To allow cross project analysis of defect 
trends. 
Ultimately anticipate, the advantages and 
disadvantages of iterative software 
development with respect to defects. 

While iterative software development has largely 
become the standard development paradigm 
throughout much of the industry, defect 
measurements approaches often cling to 
assumptions rooted in the waterfall development 
paradigm. Thus, flexibilities inherent in iterative 
software development are often not formally 
addressed. When properly managed, incremental 
flexibilities offer powerfbl advantages during 
iterative software development. However when 
abused or poorly managed those same flexibilities 
can represent dangerous pitfalls. The EoD 
measurement approach described in this paper 
offers a means by which to manage the defect 
occurrence and elimination process to the software 
project’s benefit. The task of mapping waterfall- 
like rationales to an iterative environment is left 
for the analyst to informally perform on a case-by- 
case basis. The informality and the case-by-case 
nature of the mapping directly hinders an 
organization’s ability to perform cross project 
analysis of defect trends over time and thus the 
ability to develop reliable leading indicators. 

Some components of defect measurement must 
begin before defects are even discovered in order 
to effectively employ defects during iterative 
software development to improve quality while 
removing. Namely, tracking when software 
artifacts are developed in both Regular Time and 
Logical Time. Regular time refers to a calendar 
date. Logical Time refers to the development phase 
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(requirements, design, code, test) and iteration 
(iteration I ,  2, 3 . . . ) .  These measurements can be 
easily obtained if a relatively well-defined 
configuration management process is in place. 

When defects are discovered the characteristics of 
the defect and its repair must be tracked. At a high 
level these can be categorized as: 
0 Where defects were found? 
0 Where repairs were made? 
0 

0 When defect were discovered? 
0 

0 

When artifacts were developed (See above) 

When artifacts were repaired? (regular and 
logical time) 
What precipitated the defect? (Environmental 
Change, New system knowledge, Previous 
repair, system evolution, etc.. .) 

These measures will be discussed in further detail 
in section 5 along with non-exhaustive list of 
recommended analyses that are available as a result 
of taking these measures. 

3. Waterfall verses Iterative Defect 
Management 

The waterfall life cycle’s paradigm of developing 
requirements completely and correctly before 
moving on to design and then developing a 
complete and correct design before coding and 
then testing allows defects to be defined and 
managed in a straight forward manner. That is, 
during any phase, any non-conformance to the 
previous phase is defined as a defect because 
artifacts for the previous phase are assumed to be 
complete and correct. Management of defects in 

. the waterfall lifecycle is a matter of elimination as 
soon as possible because it is assumed that 
complete information about the system at any 
phase is already available from a previous phase. 

Recall that software artifacts include requirements 
and design products and documentation as well as 
code and test results. Further iterative development 
disperses learning throughout the development 
process. (See Section 1) The assumption inherent 
in an iterative software development lifecycle 
differ from the waterfall lifecycle in a way that 
make the definition of a defect less clear but 
provides more flexibility in their management. 
Further there is valuable utility in formally 

examining and analyzing defects in the iterative 
lifecycle before/during their removal. Since the 
iterative lifecycle necessitates that the building of a 
system begin using incomplete information the 
developers must learn about the system in process. 
Thus, the definition of defects is not clear. 
Consider an artifact that is developed based on the 
best available knowledge at the time. As new 
information about the system is leamed (in 
process) that artifact will have to be updated (or 
corrected). Therefore, the line between a 
subsequent round of evolution in the system and its 
software artifacts and the repair of defects in 
artifacts is blurred. Management of defects in the 
fluid environment of iterative software 
development becomes crucial. Fortunately the 
iterative paradigm offers increased flexibility in 
many areas, including defect management to deal 
with this increased fluidity. For example: 
0 Repair of defects may be deferred to a later 

iteration, as opposed to being repaired as soon 
as possible 
Analysis of a defect can provide knowledge 
about the system to determine whether a 
newly developed portion of an artifact is in 
error or an older (or higher level) artifact 
needs to be correctedhpdated. 

The need ’ to make correct defect management 
decision will not only affect the technical quality 
of the software but programmatic risks such as 
cost an schedule as well. By formalizing the 
tracking of an organizations experience with 
respect to iterative software development 
phenomena regarding defects though the EoD 
approach, the software manger is afforded an 
empirical basis for making and defending hisher 
decisions. 

0 

4. Adjusting “Mini-Waterfalls” to True 
Iterative Software Development 

A strategy that many analysts employ in mapping 
waterfall style approaches to iterative software 
development in various domains is to treat the 
iterations of an iterative effort as miniature 
successive waterfall scenarios. This mapping often 
entails numerous informal case-by-case 
adjustments made based on the analyst’s intuitive 
understanding and extensive experience in their 
organization. While these approaches are 
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successhl at times the intuitive adjustments rest 
with the analyst and not captured as part of the 
organization’s knowledge base. Further, cross 
project consistency becomes an issue for any 
attempts at institutional analysis due to the case- 
by-case tailoring of the mapping. 

Defect 

Defect Repair 
Discovery (DD) 

(DR) 

Defective 
Artifact’s 
Repair (DAR) 

The EoD approach is critically deficient with 
regard to defect analysis due to the direct effects on 
development and defect occurrence in a given 
iteration caused by the previous iteration. Thus. 
While a reasonably consistent set of assumptions 
between the first iteration and a “mini-waterfall” 
may sometimes be made, subsequent iteration 
increasingly deviate from waterfall assumption due 
to activity and inherited defect issues from 
previous iterations. Although the notion of 
inherited portions of a system may be 
philosophically related to software reuse 
assumptions the operational result is often quite 
different. The EoD measurement and analysis 

Logical Time Regular Time 
(DDL) (DDR) 

Logical Time Regular Time 
(DRL) (DRR) 

Logical Time Regular Time 
(DARL) (DARR) 

1 or more DARs per defect record 

approach seeks to overcome these deficiencies by 
directly targeting the trans-iteration defect 
phenomena and using the result to a software 
project’s benefit. 

5. Employing Defect Measurement in the 
Iterative Software Development 
Lifecycle 

The approach of employing defects, as opposed to 
only removing, is an effort to use discovered 
defects to a software development project’s 
advantage by: 
0 Utilizing defects as a source of in process 

knowledge acquisition for the current project. 
Referencing historical defect trends for use in 
quantitative prediction of expected defect for 
future projects. 
Anticipating defect phenomena based on 
historical baselines. 

~~ 

Defect Record 

I Defective 
Artifact’s 
Creation (DAC) 

Logical Time Regular Time 
’ I (DACL) I (DACR) 

To (DDT) 

Learning Defect 
YESNO 

Derived from DDL and DACL data 

YESNO 

Derived from DDL and DACR data 
Regular Defect 
(W 

Defect Record 
Linked/Related to the defect whose 
repair introduced the new defect. 

0 or more RRs per defect record 

Related Repair 

Table 1 Defect Record 

5.1. Measurement for Defect Employment 
Toward this end the EoD approach advocates a 
series of necessary measures. (See Table 1) The 
first measure is the Defect Artifact’s Creation 
(DAC) in both logical (DACL) and regular (DACR) 
time. DAC refers to the time when the artifact 
where the defect is found was created. Thus, DAC 
will be recorded prior to the discovery of defect. It 
is the discovery of a defect that triggers the 
creation of a Defect Record (See Table 1). At this 
time the pre-existing DACL and DACR .values are 
entered into the record as appropriate. A defect 
record captures all the information relevant to a 
given defect for this measurement approach. 

Most configuration management (CM) systems 
record a date of creation and change history that 
can be used to obtain (DACR). DACL can either be 
added as an item to record during development or 
may possible be derived from CM information. If 
the CM system contains a data item that can link an 
artifact to a given iteration, version-numbering 
protocols are sometimes usefbl, then breakpoints 
for phase within an iteration may be derived from 
the regular-time date of a major review/milestone 
occurrence that traditional end a given phase for 
the organization. Thus all artifacts developed 
during a given phase could then be grouped and 
identified. Defect Discovery (DD) refers to when 
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the defect was discovered in logical (DDL) and 
regular (DDR) time. Similarly Defect Repair (DR), 
Defective Artifact’s Repair (DAR) refers to when 
(logical and regular time) the defect repair was 
complete and when a repair to a give artifact was 
completed. It is important to note that there may be 
multiple DARs for one DR. Thus, the DAR times, 
DARL and DARR, of the last artifact repaired would 
be equal to DRL and DRR respectively because the 
final DAR would complete the DR. If a defect’s 
repair is deferred to a later phase/iteration of 
development the Defect Deferred To (DDT) fields 
would reflect the logical (DDTL) and regular 
(DDTR) times when the defect repair is planned to 
take place. While DDTL is recorded at the time the 
decision to defer a defect is made DDTR is derived 
later as the start of the phase in the fbture iteration 
in which DR is planned. If a defect is not deferred 
then the fields contain a null value. A Learning 
Defect (LD) refers to a defect that requires artifacts 
that were develop in previous iterations or phases 
to be repaired. Thus, the value of the LD field is 
implicit in that it can be derived from DD and 
DAC using the rule: 

Within a single defect record 
if 
(yDACI) earlier-than DDI) 
then 
LD = Yes 
else 
LD = N o  

Similarly, Regular Defect (RD) is also implicit and 
obeys the rule: 

Within a single defect record 

(TDACJ earlier-than DDJ 
then 
RD =No 
else 
RD = Yes 

if 

This rule states that RDs are defects where only 
artifacts that were developed in the current 
phasehteration need be repaired. It is believed that 
LDs are associated with a higher probability of the 
existence and number of Related Repairs (RR) than 
RDs. RRs are records of new defects discovered as 
a result of repairs associated with the defect in the 
current defect record. Therefore, the RR field(s) 

would be filled in (added to) after the defect in the 
current record has been repaired. Ifmhile no RRs 
exist the field contains a null value. 

5.2. Analysis for Defect Employment 
Recall from section one that, in addition to defect 
tracking and removal, defect employment seeks to: 
0 Make use of defects as a source of systematic 

learning throughout the iterative lifecycle. 
0 Capture characteristics pertaining to 

developmental flexibility in JPL’s iterative 
software development lifecycle and establish 
statistical rules and thresholds to maximize 
benefit and minimize dangers. 

0 Leverage existing technology/models for 
defect prediction such as the COQUALMO 
defect prediction model. 

The measures discussed in section 5.1 were 
formulated specifically for these purposes. This 
section presents opportunities for analysis of the 
proposed metrics to achieve the stated goal above. 

5.2.1. Defects as a Source of Learning 
During iterative software development defects 
discovered in artifacts being developed in the 
current phase may prompt changes in artifacts 
developed in previous phases and iterations. This 
situation may be precipitated by one of two 
phenomenon 1) the previous artifact idwas 
defective despite sufficient knowledge to avoid the 
defect in question or 2) the previous artifact was 
developed “correctly” based on information 
available at the time; information that latter 
(currently) has been learned to be incomplete or 
incorrect. In the initial stages of this effort at JPL 
defects resulting from the situation above will be 
considered part of one category (LD). Investigation 
to determine which of the two cases above a caused 
the defect is not feasible as an in process activity 
by developers during development. However 
discrimination by an independent source or as a 
postmortem effort can be used as a source of 
information for root cause and process 
improvement purposes. 

The increased probability that artifacts will be 
developed based on information that is incomplete, 
incorrect or not fully understood is an inherent cost 
of developing software in an iterative paradigm. 
The result is often the discovery of defects in later 
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phasesliteration of software development. Knowing 
this uncertainty exists and planning in order to 
manage it is necessary for successfid development 
of high quality software within programmatic 
constraint. The EoD approach offers analysis to aid 
in managing the uncertainty accompanies 
development of software iteratively. 

4 

Analysis includes the use of the DAC, DD, RR and 
LD (implicit) measures. The first point for analysis 
is to examine the relationship between the 
defective artifact’s time of creation (DACL) and 
repair (RR) and the time when the defect was 
discovered (DDL). Since a DACL exist for each 
RR performed in response to a defect discovery 
and correcting one defect may require multiple 
RRs, the earliest DACL associated with the defect 
in question is used for this analysis. Then defects 
are discriminated by DDL (defects in each 
phaseliteration) where the DACL is earlier that DDL 
implying the defect is an LD. Within the set of 
LDs, a point system is derived where each 
development phase between an injection (earliest 
DACL) and discovery (DD,) of a defect is given a 
value of one. Further an extra point is added to the 
count whenever an Iteration Boundary is included 
in the time span. An iteration boundary exists 
between the test phase of one iteration and the 
requirements phase of the next iteration. (See 
Figure 1) Therefore, high scores in the point 
system are associated with more development 
based on a faulty foundation. This in turn raises the 
likelihood that the repairs will be more expensive 
and time consuming. 

b 
R D C T R D C  

FI: 
For each DDL = i 

IDDL=i( 

j=I 
[ Z(LDIi Points)] / IDDL=il 

Graphically the metric for each DDL = i forms an 

~ 

Figure 1: LDI Point System Example 
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Figure 2: Ideal Average LDI Points Profile 

X-axis corresponding to the time progression 
though the phases and iteration of the software 
development. The Y-axis represents the value of a 
metric for each phase that expresses a combination 
of the number and impact of LDs per phase. The 
impact of an LD refers to the amount of software 
development that has occurred between the 
“insertion” of the defect and its discovery 
measured here as the number of phases and 
iteration occurring. 

Ideally, one would expect low average LDI points 
in early phasesliteratiom because little of the 
system is developed and thus has a short history of 
artifacts in which to find RRs. One can then expect 
the average LDI points to increase dramatically in 
following phases because details of the system are 
becoming relevant causing a great deal of learning 
to take place necessitating adjustments in previous 
artifacts. Finally, Average LDI points should 
ideally decrease in late phaseliteration of software 
development because a good understanding of the 
system should be in place and remaining defects 
should be localized defects in new functionality. 
(See Figure 2) If LDI point averages remain high 
moving into later phases it is a leading indicator 
that the current schedule andlor quality may be in 
jeopardy . 

A second analysis relates the LDI points of a defect 
from the earliest DACL to DDL to the number of 
RRs associated with that defect. The intuitively 
expected result is that the number of RRs will be 
positively correlated with LDI points at a high 
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level. This is because a trend of higher LDI points 
indicates that more of the system has been built 
based on defective assumptions from previous 
phaseshterations. Therefore the number of software 
repairs as a function of iteratiordphases will start 
small in early phases/iterations increasing rapidly 
in middle phases and leveling off in late phases. 
(See Figure 3) The phenomena of the number of 
defects stabilizing in late iterations despite 
decreasing average LDI points is due to the 
increased discovery of localized defects due to 
end-of-development testing and “clean-up 
development”. Clean up development refers to 
items such as cosmetic enhancement of interfaces, 
output formatting etc.. . that tend to produce RDs 
as opposed to LDs but require repairs none the less. 

5.2.2. Defect Management Flexibility Analysis 
While defect as a learning source (Section 5.2.1) 
focuses mainly on the period from defect insertion 
to defect discovery with repair as a corollary, 
defect management analyses are more focused on 
the repair of the software after defect discovery. 
However, the two issues are so closely related that 
this organization may be regarded as a 
philosophical issue more than a technical issue. 
The analyses associated with defect management 
and the flexibilities inherent in an iterative 
software development lifecycle make use of the 
DD, DR, DAR, DDT, RR, LD (implicit) and DR 
(implicit) measures. The first two analyses relate 
the time period from DD to DR accounting for 
DDT periods to: 
0 LDsVSRDs 
0 NumberofRRs 

The period from DDR to DRR represents the 
traditional aging metric of defects. While useful, 
this aging fails to account for various flexibilities 
in defect management during development of 
software in an iterative manner. Aging of defects 
in the EoD approach considers the period from 
DDL to DRL to account for various factors such as 
overlap of phasediteration, as is common in an 
iterative environment, non-sequential development 
of a given functionality to completion or 
environmental factors such as work stoppages. In 
conjunction with the factors above, the Adjusted 
Defect Removal Period (ADRF’) from DDL to DRL 
minus the period of defect deferral (date DDT is 

180 
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p 
0 
x m  - 
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Figure 3: Expected Number of Repairs 

Recorded to DDTL), if it exists, during the overall 
interval. Defect deferral represents time in which a 
defect is purposely not addressed for strategic 
reasons. Thus, removing it from consideration in 
some cases gives a more accurate view of defect 
repair effortiproductivity by considering only the 
period where developers are burdened with the DR 
task. 

Prnfile 

Examining average ADRP / defect broken down by 
LDs and RDs over software development 
phasehterations gives insight into productivity of 
defect repair as the iterative software development 
lifecycle progress. When combined with a 
predictive technology for defects such as 
COQUALMO this information can be used for 
schedule planning purposes. A number of 
competing factors contribute to the productivity of 
defect repair including but not limited to: 
0 The numberhiming of defects discovered 

which is directly related to the amount of 
testing, inspection etc.. . 
The staffing level of personnel dedicated to 
discoveringhepairing defects including shifts 
in personnel during phases of the development 
process. 

0 The policy for deferring defect to later phases 
iterations 

At this time there is no clear justification for a 
given expected profile of defect repair productivity 
at JPL. However, current metrics efforts are, 
among other goals, attempting to generate a 
baseline profile and identify critical factors that 
explain the phenomena in the profile(s). 

0 
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When factoring the number of RRs into analysis of 
DR productivity via the ADRP, the insight in to 
DR offers additional insight into LDs. LDs with a 
high number of RRs represent critical phenomena 
that greatly inhibit the development of high quality 
software on time and within budget. Thus, the 
potential benefits of this type of analysis include 
determination of software development process 
weaknesses that offer high leverage for 
improvement. 

I 1 

Finally, by tracking DARs and their association 
with defects overtime, a measure of the amount and 
rate of change a given artifact undergoes may be 
examined. This allows software development 
personnel to target problem portions of the 
software system for: 
0 Additional scrutiny in process to resolve 

problems at the earliest possible time. 
0 Trend analysis over time to guide software 

managers in planning additional verification 
activity and resources in areas that are 
traditionally troublesome for the organization 

0 Identify areas for process improvement to 
preemptively address persistent software 
development problems. 

5.2.3. Defect Prediction in the Iterative Lifecycle 
In conjunction with the EoD approach and the JPL 
Software Quality Improvement Project’s cost 
estimation efforts, defect data is being categorized 
in terms of requirements, design, code and test, 
along with the COQUALMO drivers, for both the 
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Figure 4: Predicted Defect Introduction 
from COQUALMO 
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Figure 5: Defect Discovery at System 
Test 

EoD approach and the COQUALMO defect 
prediction model. [6] The new approach here 
augments COQUALMO by adding an iterative 
dimension to the data that COQUALMO currently 
lacks. The employment of defect approach offers 
the ability to investigate defects within the iterative 
development paradigm and COQUALMO offer 
predictive capabilities. Conversely, COQUALMO 
offers predictive capabilities that are currently 
lacking in the EoD approach discussed in this 
paper. 

Future work at JPL will yield a base of defect data 
that has the potential to relate COQUALMO to 
JPLs specific iterative phenomena. Defect data 
collected over JPL past projects’ records from 
integration testing show a significant correlation 
with COQUALMO’s prediction defect introduction 
on a percentage basis. (See Figures 4 and 5 )  The 
combination of defect employment in the iterative 
lifecycle with COQUALMO defect prediction will 
allow increased predictability using information 
that can be more readily estimated during initial 
stages of project planning. The resulting benefits 
will include better control over uncertainties 
pertaining to defect occurrence and management. 

6. Conclusion 

The EoD approach to measuring and analyzing 
defects identifies trends and phenomena that result 
from the use of an iterative software development 
lifecycle. In particular the effects, from a defects 
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standpoint, from / between one development 
iteration and the next are examined. Trend analysis 
is used to provide software managers with 
quantitative data to aid in ascertaining the status of 
the software during a given iteration as compared 
to historical experience. Further, in conjunction 
with predictive models such as COQUALMO, the 
EoD approach will allow a software manager to 
anticipate likely defect phenomena (rates, repair 
effort etc.. .) based on information gained from the 
defects themselves in early software development 
iterations. 

e ct was carried 
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