
Model Checking for Software Security Properties

John D. Powell
John. Powell@pl. nasa. gov

Caltech, Jet Propulsion Laboratory

Abstract

This paper describes the use of the Flexible modeling
Framework (FMF) for Model Checking (MC) to
perform ver&ation and search for vulnerabilities in the
Secure Socket Layer (SSL) communication protocol. The
wide use of SSL makes the existence of potential
vulnerabilities in the protocol an extremely dangerous
prospect. Therefore, the use of formal methods such as
MC represents a rigorous form of technology in an
environment where the discovery of problems carries
with it high p q o f i in terms of the potential volume of
security breaches. This paper will describe MC and
FMF and go on to show FMFs utility in making
tradeofis precipitated by model jidelity needs, state
space explosion and specipc system property
verijkation needs.

1. Introduction

Concurrent software systems and software
applications are frequently subject to software security
vulnerabilities that may render an otherwise secure
networked software environment unsafe. The addition
of software systems/ applications to an otherwise secure
environment can affect the security and safety of the
whole environment either by exploitable security
vulnerabilities in the additional software or between two
sets of individually secure software in a networked
computing environment that, through their interaction,
may cause an unwanted security exposure or
vulnerability. Therefore, any system with such
exposures or vulnerabilities can be compromised when
the software on it contains insecurities or unexpectedly
interacts in unsecure ways. Further, any connected
systems are also put at risk along with their resources,
services, and data. If an intrusion goes undetected, due
to the exposure or vulnerability, networked systems are
subject to the domino effect, where access to one system
will eventually yield access to other systems. A trusted

system on a corporate network that becomes
compromised could give hackers access to critical
corporate resources.

Given the conditions discussed above and the
potentially catastrophic nature of intrusions into systems
now and in the future, it is crucial that such
vulnerabilities and unwanted exposures be identified
and mitigated. Several factors cause these weaknesses.
Generally, they can be traced to inadequate
requirements, poor software design and development
practices, mis-configurations, new modes of network
attacks, and insecure interaction between systems.

Security weaknesses due to deficiencies in the
software lifecycle can be mitigated through formal
software assessment methodologies. Methodologies,
such as model checking (MC), can provide greater
assurance that software executing on critical systems
and systems linked to them do not expose critical data
and functional vulnerabilities resulting from
inadequately specified software requirements and
designs or exposures due to complex integration with
other software.

This paper will present the formal modeling portion
of the “Reducing Software Security Risk” research
project. A new MC approach called the Flexible
Modeling Framework (FMF) is part of a software
security assessment instrument to assist developers in
the verification of security properties in software during
the early phases of the development and maintenance
lifecycles. [1,2,3,4,7,8,9,10]

Modeling requirements and early lifecycle designs to
discover software security vulnerabilities precipitated by
the interaction of software components under
development in a new system or proposed as additions
to an existing system or environment provides early
insight into potential software security problems. This
early detection assists software development efforts to
address and correct vulnerabilities at significantly less
cost in terms of time and effort than allowing them to
persist into later lifecycle phases. Vulnerabilities that do
survive to later lifecycle phases are often addressed with

1

cumbersome “patches” that can introduce new security
problems or yet unknown exposures or vulnerabilities of
their own.

While this paper focuses on a formal modeling
technique, the overall research effort has several foci
and attempts to address an end-to-end software lifecycle
process to reduce these unwanted exposures and
vulnerabilities. Information about the overall research
effort regarding network security is available at:
http://security. jpl.nasa.gov/rssr.

Section 2 gives a brief overview of MC and the FMF
rationale. Section 3 describes the use, to date, of FMF
modeling techniques during verification of security
properties for the SSL protocol. Finally, section 4 offers
a summary conclusion of the benefits of FMF and MC
during the SSL verification effort.

2. Model Based Verification through
Model Checking

Model Based Verification (MBV) involves
development of high fidelity abstractions (Models) of
system behavior in a form that can be analyzed to
determine if critical system properties hold over the
specified possible behavior scenarios. MC is the specific
type of MBV that is utilized in the approach described
in this paper for the purpose of verifying software
security properties for networked system.

Software model checkers automatically explore all
paths from a start state in a computational tree that is
specified in an MC model. The computational tree may
contain repeated copies of sub-trees. State of the art
Model Checkers such as SPIN exploit this characteristic
to improve automated verification efficiency. The
objective is to verify system properties with respect to
models over as many scenarios as feasible. Since the
models are a selective representation of functional
capabilities under analysis, the number of feasible
scenarios is much larger than the set that can be checked
during testing. Model Checkers differ from traditional
formal techniques by the following characteristics:

0

0

Model checkers are operational as opposed to
deductive
Model checkers provide counter examples when
properties are violated (error traces)
Their goal is oriented toward finding errors as
opposed to proving correctness since the model is
correct.

An innovative verification approach, which employs
MC as its core technology, is offered as a means to
bring software security issues under formal control early
in the life cycle. [11,12] The FMF seeks to address the
problem of formal verification of larger systems by a
divide and conquer approach. [13] First, by verifying a
property over portions of the system, then incrementally
inferring the results over larger subsets of the entire
system. As such, the FMF is: 1) a system for building
models in a component based manner to cope with
system evolution over time and, 2) an approach of
compositional verification to delay the effects of state
space explosion. This methodology allows property
verification results of large and complex models to be
examined and extrapolated appropriately.

An innovative verification approach that employs
MC as its core technology is offered as a means to bring
software security issues under formal control early in
the life cycle while mitigating the drawbacks discussed
above. The FMF verifies a property over portions of the
system, and then incrementally infers the results over
larger subsets of the entire system. Thus, the FMF is a
system for building models in a component-based
manner to cope with system evolution in a timely
manner.

The compositional verification approach delays the
effects of state space explosion and allows property
verification results to be examined and extrapolated
with respect to larger, complex models. (See Figure 1)

Modeling in a component-based manner involves
building a series of small models, which later will be
strategically combined for system verification purposes.
This strategic combination correlates the modeling
fimction with modem software engineering and
architecture practices whereby a system is divided into

Explicit
~~

Figure 1: MCCT Verification Value Assignment and Propagation

http://security

major parts, and subsequently into smaller detailed
parts, and then integrated to build up a software system.
An initial series of simple components can be built
when few operational specifics are known about the
system. However, these components can be combined
and verified for consistency with properties of interest
such as software security properties.

The approach of compositional verification used in
the FMF seeks to verify properties over individual
model components and then over strategic combinations
of them. The goals of this approach are to: 1) infer
verification results over systems that are otherwise too
large and complex for MC from results of strategic
subsets (combinations) while minimizing false reports
of defects; 2) retain verification results from individual
components and component combinations to increase
the efficiency of subsequent verification attempts in
light of modifications to a component.

3. Component based MC of SSL

The current MBV efforts in the RSSR project are
focused on verifying the Secure Socket Layer (SSL)
protocol thought the use of component based MC. As
the name suggests SSL consists of layers of
functionality that lend themselves to decomposition
during the specification (modeling) phase and an FMF
compositional approach during verification. The
abstract model layers of the SSL protocol consist of:
0 The SSL Engine itself
0 The SSL library, which is an API over the actual

engine functionality
The application that invokes the library functions

There also exists functionality at a higher level,
consisting of an application interacting with the SSL
specific functionality, which can be modeled in
components for further verification. (See Figure 2)
While FMF techniques are used to model and verify the
SSL layers in search of vulnerabilities, the FMF
techniques become essential when the functionality
competing and interacting with SSL functionality is
added to the state space.

The process of MC, and thus FMF, involves
necessary tradeoffs between desired details of the
system’s behaviors and the need to manage (limit) the
state space explosion properties. The first phase of
modeling the SSL protocol focuses on the latter issue.
Therefore, the initial model components include only
the most basic functional behaviors of the SSL engine.
The SSL engine functionality is first modeled as binary
success/failure responses with the SSL library
functionality being modeled as sequences of SSL engine

actions. Then SSL application functionality can be
modeled as a non-deterministic set of scenarios
constrained only by the rules of the SSL specification.
The verification of properties over this abstraction
(model) produces little in the way of interesting
verification results due to the lack of detail, and thus,
interaction between model elements at the lowest levels
(SSL engine). This indicates the need to increase the
detail of some behaviors at the lowest levels of the
system (SSL engine) to balance needed system behavior
with state space explosion.

Fully specifying the details of the SSL engine will
cause a state space explosion that will overwhelm
computing resources during property verification.
Therefore, the use of FMF is used to add detail at the
lowest levels, determine MC resource thresholds, and
lower detail in altemate areas through the introduction
of simple non-determinism and elimination of
constraining variables. While the new state-
space/resource threshold, resulting from the introduction
of non-determinism, allows for MC of more
components in combination, the ambiguity in the
models representation of system behavior resulted in an
unacceptable rate of false anomaly detection. Again a
trade of involving a limited increase in states space to
obtain higher system fidelity by eliminating MC’s
ability to explore scenario paths that is impossible in the
actual SSL protocol. Therefore, non-determinism was
replaced with strategic use of homomorphic reduction as
a compromise between excess detail and strict non-
determinism. Homomorphic reduction is a means of
controlling state space explosion by 1) identifying
critical values for a variable, within the full range of
values it may take on, that affect the decision gates in
the logic of the rest of the system, 2) replacing the full
range of values with a smaller range of values that
represent transition from one sub-range of original

I 1

I S S L A p p l i c a t i o n I I

~ ~-

Figure 2: Component Modeling of SSL

3

values to another and 3) adjusting the logic in the rest of
the system model to reflect the reduction. For example,
instead of allowing the SSL engine function and SSL
application to providehefuse identity verification
credentials non-deterministically the model takes into
account a small set of binary condition that are set to
true when certain prerequisite functionality has been
successfully exercised. Then, the binary variables are
evaluated to determine if identity verification should be
grantedrefused.

The FMF allows the analyst to make these changes
quickly and efficiently and reverse the changes easily
when the formal specification (model) is organized in a
component-based manner that adheres to the FMF. As
of the writing of this paper MC and the FMF have not
directly uncovered any new vulnerabilities inherent in
the SSL protocol. However, the process of formal
specification of the protocol and exploration of potential
anomalies, later found to be false, has aided security
professionals at JPL in reasoning about different
dimensions of the overall SSL application and its
interaction with various systems at large. This has raised
awareness to potential vulnerabilities at the level where
the full SSL application(s) would be interacting with
other applications in the networked environment despite
the fact that MC with the FMF did not give direct
evidence of their existence. Direct MC evidence was not
possible due to state space explosion and abstraction
fidelity constraints when trying to model and verify an
entire networked environment of applications at large.

4. Conclusion

The FMF approach to MC has shown itself to be
valuable in making tradeoffs between necessary system
details and control of state space explosion for
verification of system properties in a timely manner.
FMF’s component based approach yield models that
allow for quick tradeoffs of greater detail on one portion
of a model for greater abstraction in other part as a
means of quickly adapting an MC model to the specific
needs of different properties to be verified over it. The
layered nature of the SSL protocol and digital
communication ad security at large readily lends itself
FMF practices.

5. Acknowledgement

The research described in this paper is being carried
out at the Jet Propulsion Laboratory, Califomia Institute
of Technology, under a contract with the National
Aeronautics and Space Administration.

6. References

[l] D. Gilliam, J. Kelly, M. Bishop, “Reducing Software
Security Risk Through an Integrated Approach,” Proc. of the
Ninth IEEE Intemational Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises
(June, 2000), Gaithersburg, MD, pp.141-146.
[2] Published and maintained by Mitre. The CVE listing can
be found at: http://cve.mitre.org/
[3] G. Fink, M. Bishop, “Property Based Testing: A New
Approach to Testing for Assurance,” ACM SIGSOFT
Software Engineering Notes 22(4) (July 1997).
[4] M. Bishop, “Vulnerabilities Analysis,” Proceedings of the
Recent Advances in Intrusion Detection (Sep. 1999).
[5] J. Dodson, “Specification and Classification of Generic
Security Flaws for the Tester’s Assistant Library,” M.S.
Thesis, Department of Computer Science, University of
Califomia at Davis, Davis CA (June 1996).
[6] J. R. Callahan, S. M. Easterbrook and T. L. Montgomery,
“Generating Test Oracles via Model Checking,” NASNWVU
Software Research Lab, Fairmont, WV, Technical Report #

[7] P. E. Ammann, P. E. Black and W. Majurski. “Using
Model Checking to Generate Test Specifications,” 2nd
International Conference on Formal Engineering Methods

[SI G. Lowe. Breaking and Fixing the Needham-Schroeder
Public Key Protocol Using CSP and FDR. In TACAS96,
1996.
[9] W. Wen and F Mizoguchi. Model checking Security
Protocols: A Case Study Using SPIN, IMC Technical Report,
November, 1998.
[lo] G. Holmann. Design and Validation of Computer
Protocols. Prentice Hall 1990; ISBN: 0135399254 .
[1 11 D. Gilliam, 3. Kelly, J. Powell, M. Bishop, “Development
of a Software Security Assessment Instrument to Reduce
Software Security Risk” Proc. of the Tenth IEEE
Intemational Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, Boston, MA, pp

[12] D. Gilliam, J. Powell, J. Kelly, M. Bishop, “Reducing
Software Security Risk Through an Integrated Approach”,
IEEE Goddard 26th Annual Software Engineering Workshop.
1131 Component Based Model Checking, J. Powell, D.
Gilliam, Proceedings of the 6th World Conference on
Integrated Design and Process Technology, June 23-28,
Pasadena CA, p66 & CD

NASA-IVV-98-015, 1998.

(1998) pp. 46-54.

144-1 49.

7. Biographies

John D. Powell holds a M.S. in Computer Science from
West Virginia University and is a software quality
assurance researcher at the Califomia Institute of
Technology’s Jet Propulsion Laboratory (JPL) in the
Quality Assurance office. Currently he performs
research in the area of QualityEost Estimation and

4

http://cve.mitre.org

Prediction as well as Formal Methods research for
efforts at JPL. F’rior to his work at PL/USC, John
worked as a System Software IV&V Analyst for
NASA’s prime IV&V contractor (Titan-Averstar)
performing IV&V analysis on the Redundancy
Management and Control systems for the Space
Shuttle’s Checkout Launch and Control System
(CLCS). Prior tu that, at the NASA Goddard IV&V
Facility, John performed research under the Intelligent
Systems Initiative exploring alternatives to traditional
model checking in conjunction with West Virginia
University’s Software Research Laboratory (SRL). His
publications include a master thesis, papers at ICSE,
CSEE&T, ISRE, IEEE WETICE, ISPA and various
NASA Conferences/Workshops and technical reports.

5

