
Autonomous Mobility Software Validation Challenges
for Planetary Surface Missions

Edward Tunstel
Robotic Vehicles Group

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, CA, 91 109
tunstel @ robotics.jpl.nasa.gov

Abstract

This paper discusses characteristics of the surface
mobility problem that present challenges for validation of
autonomous mobility software. We provide a general
description of a commonly used hardware-centric and
dynamic approach to mobility software validation for
flight systems. We also highlight some effects and
impacts of flight schedules and deliveries on this
validation approach and related mobility software
development. Finally, we offer suggestions for dealing
with some of the challenges and improving the process
for autonomous mobility software development and
validation on future projects.

1. Introduction

NASA employs autonomous rovers as surrogate
explorers on remote planetary surfaces. The utility of
autonomous rovers is a function of their ability to move
about and explore intelligently without frequent contact
with Earth-based mission operators. More increasingly,
robotic vehicle autonomy is required to achieve aspects of
overall success for planetary surface missions such as the
2003 Mars Exploration Rovers (MER) and 2009 Mars
Science Laboratory (MSL) flight projects. As such, the
software that enables autonomous mobility must be
validated against related functionality required for
mission success. The process of validation establishes
that the software system design is actually capable of
executing required mission functions.

Verification of isolated mobility software functions
against specific requirements is relatively straightforward.
However, validation of autonomous mobility
functionality is non-trivial due to the fact that robotic
surface mobility systems interact non-deterministically

with the physical environment. This presents a number of
challenges when it comes to establishing the capability of
autonomy software for executing required mission
functions involving surface mobility and navigation in
unstructured and/or uncharted terrain.

A variety of effective approaches exist for validating
software using formal and informal methods depending
on the application. Autonomous mobility software
validation methods often include high-fidelity simulation
and extensive physical testing as part of functional
(“black-box”) testing strategies for which a number of
methods apply [l]. While the key words here are “high-
fidelity” and “extensive,” flight schedule and resource
realities may only afford us one, the other, or neither as
the case may be. Indeed, in our rover surface mission
experience thus far, we have seen that flight systems do
not always have the luxury of development plans and
schedules that permit extensive testing of mobility
systems in realistic environments [2-41. Even with these
luxuries, software validation in general [l , 51 and
autonomy software in particular [6] remains a developing
art. Nevertheless, flight system personnel and project
management must be convinced that autonomy software
will satisfy related mission requirements at all levels.

In the sections that follow, we discuss autonomous
mobility and its software validation for surface missions.
In section 2, we relate mobility functionality to mission
success, followed by characteristics of surface mobility
that present challenges for validation in Section 3.
Section 4 provides a general description of an approach
used to validate mobility software for Mars rover
missions. In Section 5, some realities of flight system
implementations are highlighted as well as effects and
impacts on autonomous mobility software development
and validation. Brief recommendations are offered in
Section 6 for dealing with some of the challenges and for

http://robotics.jpl.nasa.gov

improving the validation process for future projects,
followed by a summary and conclusions.

2. Autonomous mobility and mission success

Robotic vehicles for planetary surface missions are
designed to effectively maneuver in a complex target
environment and extend the reach of onboard science
instruments beyond that of stationary landers. Whether
the target environment is the planet surface or subsurface,
mission success is in some way enabled by the basic
mobility functionality. Autonomy is required to enhance
surface missions by improving the effectiveness of the
mobility function as a science-driven tool for achieving
mission goals [7]. Accordingly, recent and planned
surface missions include requirements that rely on
autonomous mobility to achieve mission success.

In 1997, the Mars Pathfinder Mission conducted a
Microrover Flight Experiment (MFEX) using the
Sojourner rover. The rover software design included a
capability for low-level reactive navigation for the
purpose of safely reaching targets of scientific interest in
the area surrounding the lander. The rover was required
to traverse to a target of opportunity to acquire
spectroscopic measurements as part of mission success
[3]. This could be accomplished by sequencing basic
mobility commands or by using the reactive navigation
functionality, and so this requirement was only loosely
tied to autonomy from a validation standpoint. As the
need for autonomous mobility increases it is reflected
more explicitly in mission requirements against which
software must be validated.

The twin rovers launched by the MER project and the
rover being planned for the MSL mission are explicitly
required to use autonomy in support of mission success.
Software designs for these rovers include autonomy
capabilities of varying complexity for navigation,
instrument placement, resource management, and science
data gathering. General statements of the related
autonomous mobility requirements are similar to the
following: the rover(s) must be able to safely traverse
some substantial minimum distance per day of operations
in terrain of some reference complexity while maintaining
estimated position knowledge within some small
percentage of distance traversed [4, 81. The reference
complexity of the terrain is typically as documented by
images taken at Viking Lander (1970s) or Mars
Pathfinder (1997) landing sites. Following a successful
MER mission, the MSL terrain complexity may be
expressed in terms of terrain traversed by MER rovers.
Furthermore, the mobility requirements for MSL will
likely call for increased autonomy to achieve primary
mission capabilities of longer distance traverses and
autonomous short distance approach to designated
science targets followed by instrument placement (all

with less interaction with mission operators than prior
missions) [9].

In this paper, we limit the scope of our discussion to
software validation issues related to autonomous mobility
only. For the purpose of the discussion, we refer to
autonomy software for surface mobility as that onboard
software designed for data processing associated with
sensing, perception, reasoning and decision-making for
the purpose of directing servo-level execution. Therefore,
we are addressing software at a higher level than
servomotor control and at a lower level (in most cases)
than symbolic planner-schedulers. Within this context,
high-level autonomy includes perception, reasoning,
decision-making, etc., while low-level autonomy includes
sensor-based reactive motion, hazard detection and
avoidance, and local navigation. High-level autonomous
mobility software is often designed to interface with low-
level autonomy software and, as such, is at least one
architectural level removed from interactions with
mobility hardware and its environment interactions. For
this reason, high-level autonomy software evaluation can
more readily be handled using verification methods (e.g.
model checking and model-based reasoning [lo]).

Low-level autonomous mobility software responds to
perceptions and recommendations derived from high-
level software and the sensor-based perception system. It
can be verified to a limited extent using similar methods.
However, the validation challenges increase considerably
as we move deeper into the autonomous mobility system
from software-software interactions to software-hardware
interactions particularly due to transitions from
determinism to non-determinism in software-induced
system behavior. The non-deterministic system behavior
manifests itself at the level of hardware-environment
interactions, where the “rubber hits the road.” It is here
where it becomes more difficult to establish that the
system is actually capable of executing the mobility
functions required for mission success.

3. Non-determinism as “rubber hits road”

Modeling, simulating and/or predicting the functional
behavior of orbiter and fly-by spacecraft is facilitated by
reasonably well behaved dynamics and operating
environments. For such robotic spacecraft, conventional
estimation and control techniques [l 1 J have similar
effects on spacecraft behavior in simulation as they do in
reality. This is due to the fact that the physical laws of
orbital mechanics and planetary atmospheric
aerodynamics are reasonably well understood and well
behaved in space. Unfortunately, the complexities of
interaction between mobility systems and planet surfaces
dominate when the “rubber hits the road,” and the
problems are sometimes compounded by reduced-gravity
effects. The result is non-deterministic behavior as the

system interacts with the world and increased uncertainty
in how the autonomous mobility system will respond to
operational commands. A few characteristics of the
surface mobility problem that serve to illustrate this are
described below.

Mobility and navigation problems for outdoor rough
terrain vehicles are characterized by high levels of
difficulty and increased measurement uncertainty. This is
due to the fact that complex motions outside of the
ground plane occur quite frequently as the vehicle
traverses undulated terrain, encountering multidirectional
impulsive and resistive forces throughout. In addition,
common mobility and navigation sensors often
inadequately handle the tremendous variability of surface
features and properties of outdoor terrain. Such sources
of uncertainty in input interpretation and output execution
reduce the predictability of system behavior.

Wheeled mobility systems are also subject to
undesirable wheel-terrain interactions that cause wheels
to slip on rocks and soil. Frequent loss of traction due to
wheel slip during traverses from one place to another will
detract significantly from the ability to maintain good
rover position estimates. These factors impact the ability
to guarantee required accuracy of localization estimates.

In soft soils, loss of traction due to excessive wheel
slippage can lead to wheel sinkage and ultimately vehicle
entrapment. It is possible for wheels to sink to soil depths
sufficient to prohibit rover progress over terrain, thus
trapping the vehicle at one location. This is also possible
on soils with insufficient bearing strength to support the
rover (incidentally, a property to which a look-ahead
perception system may be insensitive). Such factors
potentially impact our ability to guarantee compliance
with traverse safety and/or distance requirements.

How do we convince ourselves, then, that autonomous
mobility software that induces non-deterministic behavior
will perform well enough to execute mission functions as
required? We respond to this challenge by conducting a
validation testing program that aims to bind the relevant
uncertainties to limits within which mobility requirements
can be met with high probability. This requires extensive
functional testing and system characterization. Thus, our
approach is based on the notion that given sufficient
testing, it is possible to make reasonably comfortable
predictions about the software capabilities [11.

4. Autonomous mobility software validation

Flight system validation activities place emphasis on
validating the implemented system design and include
challenging the system to establish its operational limits
through functional testing in nominal and off-nominal
scenarios. Here, we briefly describe in general terms an
approach used to validate autonomous mobility flight
software to a level of acceptable confidence.

We are still gaining valuable experience in rover
surface missions building upon the first success in 1997
with Sojourner, the MFEX rover. As such, validation
methods are inherited to some extent from the technology
development practices that led to Sojourner and continue
today. These methods generally rely upon the availability
of one of more prototypes of a flight rover referred to as a
Software Development Model (SDM), followed by later
availability of an Engineering Model (EM) rover that is
very similar if not identical to the flight article.

4.1 Reliance on physical rover models

Depending on project resources and/or the maturity of
the rover design early in project development, an SDM
may also be an EM for all intents and purposes. More
often than not, SDMs vary in hardware and software
fidelity with respect to the flight rover from project to
project. At a minimum, the SDM bears some similarity
to aspects of the flight system under development
(physical configuration, subsystem functionality, etc) but
does not approach the fidelity of the EM. The higher the
fidelity with respect to the flight article, the more value-
added to the validation process by these prototypes.
Availability of an SDM for use by rover flight software
developers is preferred, recommended, and most valuable
early in the project definition or development phases.

An SDM rover is typically used in a preliminary test
arena such as an indoor sandbox collocated with the
software development laboratory. This physical testbed
is equipped with a variety of reconfigurable terrain
artifacts (and ideally, lighting options) that permit
arrangements of realistic landscapes for mobility testing.
Additional essentials include measurement systems for
ground truth, data logging, and other means for test
related documentation and post-analysis. Finally, this
infrastructure is augmented by more realistic outdoor
facilities that resemble the planetary terrain as closely as
is practical given project resources. These facilities are
used for realistic field trials to validate autonomy
algorithms [121 and, eventually, operational readiness
tests to validate required functionality. Field tests may
include end-to-end operations using appropriate facilities
and infrastructure including satellite communications
between JPL and remote field sites [13]. The general
validation approach for autonomous mobility software is
hardware-focused and utilizes validation metrics such as
requirements coverage, which ensure that all required
functionalities are covered by at least one test [5] .

4.2 Validation of Mars rover autonomy

The steps taken to formulate and create the
methodologies and experimentalltesting facilities used
during Sojourner’s software development [2] were

important steps toward enabling systematic performance
evaluation and validation for later Mars rover prototypes
as well. Evaluation of Sojourner rover autonomous
mobility software for the MFEX mission activities
consisted of many navigation trials in an indoor sandbox
and outdoor trials in realistic terrain using SDMs.
Simulation runs were also used as an alternative to
laborious test setups (manual arrangements of rock
distributions) that offered an automated means of
achieving more complete coverage of software scenarios
in lesser time than physical tests [2] . The simulated rover
runs were used to validate simulation predictions via
comparison to real runs. Simulation was shown to
accurately predict rover SDM behavior in a statistically
significant manner for runs without failures [141.

The MER autonomous mobility software validation
uses similar methods performed in stages on an SDM and
later on flight EMS. Early testing and validation of the
autonomous navigation software was done using the
Athena SDM rover running navigation trials in the JPL
MarsYard [SI, an outdoor test facility. The Athena SDM
differs in size and kinematic configuration from the MER
design but utilizes functionally similar mobility and
hazard detection hardware. Later validation was done in
an indoor sandbox facility using the flight EM rovers by
running a number of test cases under different terrain
conditions to validate nominal and off-nominal
functionality. Further validation plans include robustness
and characterization testing in outdoor environments of
increased variability. Such testing permits refinement of
the many tunable parameter values that are characteristic
of autonomy software and govern its performance.

The validation program being contemplated for the
MSL autonomous mobility software includes some of the
same elements described thus far. The key autonomy
technologies required for MSL mobility are presently
under development and will undergo a validation process
formulated by the Mars Technology Program [9].
Through this validation process, quantification of
software and algorithm performance will be based on
field experimentation as well as statistical results from
simulations. Newly developed mobility (and other)
autonomy algorithms will be validated prior to actual
consideration by, and infusion into, the flight project.
Thus, it represents a generalized validation process aimed
at validating different new technologies on different
robotic platforms (SDMs essentially) and in various
conditions. Any specific autonomy software validated by
this process and selected for use by MSL will still need to
be validated on an MSL EM rover. Scenarios would be
derived from autonomy requirements for long distance
traverse and short distance approach to science targets.

5. Validation challenges and flight projects

Thus far we have discussed the fundamental challenge
presented by non-determinism and a general validation
approach used to deal with it, which is focused on
hardware-based functional testing and computer
simulations. Unfortunately, the challenges do not end
there. In this section, we highlight some of the challenges
that may be encountered when attempting to apply the
validation approach within the flight project environment
in the face of project implementation realities.

5.1 Integrated schedule issues

Flight systems are comprised of numerous subsystems
whose respective schedules are in relative flux throughout
the design and development phase. As projects go,
subsystems rely on and are committed to other
subsystems through a collection of receivables and
deliverables of documents, hardware and software.
Inevitable misalignments in the project integrated
schedule must be continually adjusted within the finite
time and resources allocated for project implementation.
From the vantage point of software development, some of
the possible ramifications include slips in schedule that
result in late hardware deliveries (SDM or EM), rushed
hardware deliveries that require re-work before becoming
useful for software testing, and tight software
development and release schedules that serve to reduce
time allocated for validation testing on hardware.

As emphasized earlier, surface mission projects are
best served when autonomous mobility software
developers are provided with hardware early. In our
rover surface mission experience thus far, we have seen
that flight systems do not always have the luxury of
development schedules that permit sufficient time for
extensive testing of EM rovers. Late hardware or the lack
thereof coupled with insufficient time for thorough testing
goes against the aim of our validation approach to bind
performance uncertainties to limits within which mobility
requirements can be met with high probability. This
creates a situation wherein we risk falling short of
meeting the challenges posed by non-determinism, and
thus, our ability to reach conclusions about software
capabilities and validated requirements.

5.2 Facility issues

In addition to integrated schedule issues, flight
systems do not always have sufficient facilities or
resources to conduct extensive testing of rovers in
realistic (physically similar to destination) environments.
As the requirements for autonomous mobility become
more complex relative to the Mars Pathfinder MFEX, the
importance of the physical test environment fidelity
increases. The bulk of mobility and navigation software
validation cannot continue to be done with high

confidence based solely on SDM/EM exercises in indoor
sandbox facilities or computer simulations. Sandboxes
are adequate for early incremental development and
isolated testing of functionality and performance.
However, the richer test environment offered by planetary
analogue natural terrain is essential for characterization
and exposure of software design problems that may not
arise in the sandbox.

An interesting dichotomy occurs in the transition from
SDM to EM rovers with respect to testing and later
validation. When the time comes at which a flight-like
EM is available for use by autonomous mobility software
developers, test activities migrate to these higher fidelity
platforms. Due to the usual high expense and criticality
of EM and flight hardware there is a general (and
justified) conservatism associated with the handling of the
hardware. Developers and test conductors are reluctant to
risk breaking the hardware and, to some extent, degrading
its pristine condition through the course of aggressive
testing on rough terrain. This is contrary to the type of
testing needed to validate autonomous mobility software.
It serves to steer testing further away from analogue
environments where the validation testing would be more
meaningful, to more benign and less risky settings in the
sandbox. This is an important issue because the flight
rover(s) proper may never be extensively tested on
analogue terrain until reaching the planetary destination
when the surface mission begins. The subset of critical
functionality is certainly validated on the flight rover(s),
but this occurs in the confines of clean project
laboratories where the terrain consists of protective floor-
mats, and where critical metrics such as actuator usage
must be carefully monitored relative actuator lifetime.
Meanwhile, the aspects of validation discussed herein
must be done on EMS in “dirty” testbed environments.

Since MFEX, we have started to outgrow existing
rough terrain facilities such as the various JPL sandboxes
and the current JPL Marsyard. With MER and MSL
requirements on traverse distance and related accuracies
larger facilities are needed to support the validation effort.
Furthermore, terrain facilities of greater variability are
needed since the sandboxes and the MarsYard are
essentially flat and devoid of continuous courses of
sufficient length and variable terrain types to adequately
support long distance traverse trials. This is no substitute
for the advantages to be gained from remote field trials,
however, when practical.

Computer simulation facilities are considered by
many to be an attractive validation option in several
situations: (1) in lieu of available rover hardware, (2) to
improve test case coverage when there is insufficient time
or resources for extensive hardware tests, (3) when there
is a desire to avoid aggressive tests with EM rovers, and
(4) when logistics of remote outdoor testing in analogue
terrain are impractical. At present, however, we cannot

model physical environment interactions associated with
vehicle motion (i.e., wheel-terrain effects, soil mechanics,
vehicle dynamics, etc.) well enough to rely on
simulations alone for validating autonomous mobility
software. A balance must be struck between functional
hardware-based testing and high-fidelity simulation [151
that achieves the aim of the validation process.

5.3 Impact on autonomy performance and usage

In worst-case scenarios, flight development schedule
and facility issues discussed above can combine to
significantly impact flight software development and
performance, as well as the degree to which validation is
achieved and autonomy capabilities are actually exercised
during a mission. A potential domino effect can occur
that comes full circle to impact autonomy technology
development and infusion for future missions.

Delayed hardware deliveries lead to deferment or
descopes of characterization testing, which we have
declared as an essential activity through which software
developers establish fine-tuned sets of parameters that
govern autonomy performance. While Monte Carlo
computer simulations of reasonable fidelity add definite
value, characterization of physical mobility systems in
physical environments directly feeds back into autonomy
software development and enables more meaningful
validation. This test and development feedback loop is a
“software-rover system identification” process of sorts,
which robot software developers are quite familiar with in
common practice. It may be thought of as a robotics
“mind-body’’ exercise that can easily produce different
sets of configuration parameter values for seemingly
identical hardware platforms (e.g., the twin MER rovers
and their EMS). Characterization testing could effectively
be performed during the post-launch, pre-landing periods
on EM rovers; however, at such a late stage such testing
could easily turn into increased regression testing.

Schedule slips and inadequate facilities lead to
thorough validation of only the most basic functionality.
In this case, the autonomy capabilities are less likely to be
used by conservative mission operations personnel if they
are deemed as not absolutely necessary for achieving
minimum mission success. The fact that the minimally
tested autonomy remained part of the mission baseline
capability is testament to the belief that it would have
enhanced the mission and perhaps the science return. If it
is not sufficiently validated, then it is not sufficiently
trusted, and the development investment and enhanced
science return is lost for the mission. At best, we are
doomed to resume the validation process for a future
mission should a similar capability be required.

In the event that autonomy software is sufficiently
validated in the eyes of flight system engineers, perhaps
the remaining challenge is presented by a conservative

mission system that is reluctant to use the capability until
late in the mission operations. This potential to
incompletely exercise the full autonomy capability of the
software can result in misleading post-mission
assessments about the level of autonomy included among
mission capabilities (or worst, reduced science return). In
this case, there is no distinction between autonomy
functions that are available versus those that were actually
exercised during the mission. This fosters a misperception
of the actual state of the art of flight autonomy, which
influences the focus of future technology development
and investments. The final impact is that technology
development funds may be allocated to new starts that
reinvent the wheel, when all that may be necessary is
evaluation and further validation of existing autonomy
flight software.

6. Recommendations

As NASA continues to design, develop, and operate
missions requiring autonomy for surface mobility, we
will gain valuable experience in determining the
validation methods that work best for the domain.
Indeed, verification and validation of autonomy software
systems is a developing art as witnessed by the frequent
organization of recent workshops dedicated to the topic
[6, 16, 171. In the meantime, there are a number of steps
we can take to improve upon the current approaches in
light of the challenges discussed above.

To deal with some of the challenges of validating
autonomous mobility software, the validation process
must include substantial testing in more realistic
environments. This will require investments in facilities
and supporting infrastructure. In particular, new rough
terrain facilities should be contemplated of size and
features commensurate with distance goals and terrain
variations expected for future missions. Discussions
among interested managers and program offices have
already begun towards this end. Representative examples
of large-scale outdoor test courses for ground vehicle
testing exist and are being used in DARPA and DOE
funded research programs. They include a 100-acre
testbed at Southwest Research Institute [18] and the 226-
acre Robotic Vehicle Range [19] at Sandia National
Laboratories. These facilities are several orders of
magnitude larger than the JPL Marsyard.

Flight projects should plan to build enough SDhUEM
platforms to ensure that the mobility software
development team has a dedicated platform to work with
throughout project development and validation activities.
This would alleviate contention for testbed hardware
usage among subsystems. It would also allow maximal
time for software-rover system identification (as
described in Section 5.3 above). Investment in high-
fidelity simulation capabilities should continue so that

they are available to supplement hardware testing,
especially if an SDhUEM is not available in the early
software development phase. The Mars Technology
Program is making strides in this direction [9]. However,
to further enhance validation capabilities, new and
emerging computing methods should be adopted that can
be augmented with simulation capabilities to compensate
for any lack of realistic facilities and/or validation time in
the project schedule. A good example of this is a means
for automated testing and test case generation with high-
fidelity simulation in the loop. Some progress in this
regard has been made at the Naval Research Laboratory
where an approach based on genetic algorithms has been
developed to automate an emulation of the process that
test engineers follow to search for interesting fault
scenarios in a space of possible fault scenarios [20]. Such
a search is otherwise done sparsely and more slowly by
the manual process used by test engineers. Experience
using this approach suggests that if offers ,advantages
over other automated and manual testing methods used
for validating intelligent software controllers [20].

Finally (for now), efforts should be made to define
and utilize autonomy performance metrics to facilitate
mobility software validation. Good performance metrics
for autonomy will allow us to describe autonomy
capabilities in quantitative terms. This would be directly
useful for convincing project management (and the
conservative mission operator) not only that a capability
exists, but also how good it is with respect to some well-
defined and easily understood metric of performance.
Performance metrics for autonomy will also enable us to
write better requirement statements that are falsifiable,
which is a pre-requisite for requirement validation [11.
Good examples of metrics that are germane to
autonomous systems are not common knowledge but
have been a topic of considerable thought for the past
several years. A notable white paper sums up the state of
such thought as evolved from an annual workshop on the
topic sponsored initially by NIST and most recently with
co-sponsorship including NASA [15].

7. Summary and conclusions

In the preceding sections, we emphasize the
increasingly stronger relationship between autonomous
mobility and surface mission success criteria. We discuss
non-deterministic aspects of the surface mobility problem
that present challenges for autonomy software validation.
A validation approach being used to meet the challenges
is generally described and some effects of flight
schedules and deliveries on successful implementation of
the approach are highlighted. Finally, recommendations
are offered for dealing with the challenges presented and
include: expansion of test and validation facilities, early
hardware delivery to software developers, automated

simulation-based testing, and adoption of autonomy
performance metrics.

We acknowledge that functional testing will not
expose all problems with autonomous mobility software.
It should be used in addition to formal verification where
applicable. We advocate the notion that extensive testing
in realistic settings will enable characterization, which
will enable software tuning and improve predictability, as
well as our ability to diagnose problems that arise during
operations. Extensive testing will increase the likelihood
that the full autonomy capability being validated will be
exploited on the mission and lead to healthier returns on
the investments made to develop the software capability.
Furthermore, this will permit efficient reuse, and accurate
assessments of the state of the art, of autonomy software
technology for future missions.

8. Acknowledgments
The research described in this paper was performed at the
Jet Propulsion Laboratory, California Institute of
Technology, under contract with the National Aeronautics
and Space Administration.

9. References

[11 Beizer, B., Black-Box Testing: Techniques for functional
testing of software and systems, John Wiley & Sons, New York,
1995.

[2] L. Matthies, E. Gat, R. Harrison, B. Wilcox, R. Volpe, and
T. Litwin, “Mars Microrover Navigation: Performance
evaluation and enhancement.” Autonomous Robots, Vol. 2, No.
4, Kluwer Academic Publishers, Dordrecht, Netherlands, 1995,
pp. 291-312.

[3] Mishkin, A., et al., “Experiences with Operations and
Autonomy of the Mars Pathfinder Microrover,“ Proc. IEEE
Aerospace Conference, Aspen, CO, March 1998.

[4] J. Biesiadecki, M. Maimone, and J. Morrison, “The Athena
SDM Rover: A testbed for Mars rover mobility,” International
Symposium on Artificial Intelligence, Robotics and Automation
in Space, Montreal, Canada, Paper No. AM026, June 2001.

[5] Rakitin, S.R., Software Verification and Validation: A
practitioner’s guide, Artech House, Boston, MA, 1997.

[6] C. Pecheur, J. Caldwell, R. Simmons, and W. Visser,
“Verification and Validation of Autonomous and Adaptive
Systems,” Report from the RIACS Workshop on the
Verification and Validation of Autonomous and Adaptive
Systems, Pacific Grove, CA, December 2000, Online Version
2.2, Feb. 23, 2001, http://ase.arc.nasa.gov/vv2000/asilomar-
report.html.

[7] Space Studies Board & National Research Council, “A
Scientific Rationale for Mobility in Planetary Environments,”
National Academy Press, Washington, DC, 1999.

[SI S.B. Goldberg, M.W. Maimone, and L. Matthies, “Stereo
Vision and Rover navigation Software for Planetary
Exploration,” Proc. IEEE Aerospace Conference, Big Sky, MT,
March 2002

[9] R. Volpe, “Rover Functional Autonomy Development for
the Mars Mobile Science Laboratory,” IEEE Aerospace
Conference, Big Sky, Montana, March 2003, Paper #1289.

[lo] C. Pecheur, “Verification and Validation of Autonomy
Software at NASA,” NASA Technical Report, NASAITM
2000-209602, August 2000.

[I 13 Kaplan, M.H., Modem Spacecraji Dynamics and Control,
John Wiley & Sons, New York, 1976.

[I21 T. Huntsberger et al, “Rover Autonomy for Long Range
Navigation and Science Data Acquisition on Planetary
Surfaces,” IEEE International Conference on Robotics and
Automation, Washington, DC, May 2002, pp. 3161-3168.

[13] E. Tunstel et al, “ E D 0 Rover Field Trials as Rehearsal for
the 2003 Mars Exploration Rover Mission,” Proc. 91h
International Syniposium on Robotics and Applications, World
Automation Congress, Orlando, FL, June 2002.

[14] E. Gat, “Towards Principled Experimental Study of
Autonomous Mobile Robots,” Autonomous Robots, Vol. 2,
1995, pp. 179-189.

[I51 A. Meystel et al, “Measuring Performance of Systems with
Autonomy: Metrics for intelligence of constructed systems,”
White Paper, in Proc. of Performance Metrics for Intelligent
Systems Workshop, NIST, Gaithersburg, MD, August 2000.

[161 Software Assurance Research Program, NASA Software
Independent Verification and Validation Facility, 2nd Annual
NASA Office of Safety and Mission Assurance Software
Assurance Symposium, Berkley Springs, West Virginia,
September 2002, http://sas.ivv.nasa.gov/.

[I71 A. Christiansen, R. Harrigan, and K. Kwok (Workshop
Orgs.), “Validation of Public Sector Robotic Systems: Moving
from demos to experiments,” IEEE International Conference on
Robotics and Automation, Washington, DC, 2002.

[18] B. McBride and G. Peri, “Testing Ground Mobile Robots,”
in A. Christiansen, R. Harrigan, and K. Kwok (Orgs.),
Workshop on Validation of Public Sector Robotic Systems:
Moving from demos to experiments. IEEE Intl. Conference on
Robotics and Automation, Washington, DC, 2002,
http://tmr.appliedphysics.swri.edu/icra/mcbride_andgeri.pdf.

[191 Sandia National Laboratories, “Robotic Vehicle Range,”
http://www.sandia.gov/isrclRVR.html, Last updated: 10/28/02.

[20] A.C. Schultz, J.J. Grefenstette, and K.A. De Jong,
“Learning to Break Things: Adaptive testing of intelligent
controllers,” in Handbook of Evolutionary Computation, IOP
Publishing Ltd and Oxford University Press, 1995.

http://ase.arc.nasa.gov/vv2000/asilomar
http://sas.ivv.nasa.gov
http://tmr.appliedphysics.swri.edu/icra/mcbride_andgeri.pdf
http://www.sandia.gov/isrclRVR.html

