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Abstract 

This paper discusses characteristics of the surface 
mobility problem that present challenges for validation of 
autonomous mobility software. We provide a general 
description of a commonly used hardware-centric and 
dynamic approach to mobility software validation for 
flight systems. We also highlight some effects and 
impacts of flight schedules and deliveries on this 
validation approach and related mobility software 
development. Finally, we offer suggestions for dealing 
with some of the challenges and improving the process 
for autonomous mobility software development and 
validation on future projects. 

1. Introduction 

NASA employs autonomous rovers as surrogate 
explorers on remote planetary surfaces. The utility of 
autonomous rovers is a function of their ability to move 
about and explore intelligently without frequent contact 
with Earth-based mission operators. More increasingly, 
robotic vehicle autonomy is required to achieve aspects of 
overall success for planetary surface missions such as the 
2003 Mars Exploration Rovers (MER) and 2009 Mars 
Science Laboratory (MSL) flight projects. As such, the 
software that enables autonomous mobility must be 
validated against related functionality required for 
mission success. The process of validation establishes 
that the software system design is actually capable of 
executing required mission functions. 

Verification of isolated mobility software functions 
against specific requirements is relatively straightforward. 
However, validation of autonomous mobility 
functionality is non-trivial due to the fact that robotic 
surface mobility systems interact non-deterministically 

with the physical environment. This presents a number of 
challenges when it comes to establishing the capability of 
autonomy software for executing required mission 
functions involving surface mobility and navigation in 
unstructured and/or uncharted terrain. 

A variety of effective approaches exist for validating 
software using formal and informal methods depending 
on the application. Autonomous mobility software 
validation methods often include high-fidelity simulation 
and extensive physical testing as part of functional 
(“black-box”) testing strategies for which a number of 
methods apply [l]. While the key words here are “high- 
fidelity” and “extensive,” flight schedule and resource 
realities may only afford us one, the other, or neither as 
the case may be. Indeed, in our rover surface mission 
experience thus far, we have seen that flight systems do 
not always have the luxury of development plans and 
schedules that permit extensive testing of mobility 
systems in realistic environments [2-41. Even with these 
luxuries, software validation in general [ l ,  51 and 
autonomy software in particular [6] remains a developing 
art. Nevertheless, flight system personnel and project 
management must be convinced that autonomy software 
will satisfy related mission requirements at all levels. 

In the sections that follow, we discuss autonomous 
mobility and its software validation for surface missions. 
In section 2,  we relate mobility functionality to mission 
success, followed by characteristics of surface mobility 
that present challenges for validation in Section 3.  
Section 4 provides a general description of an approach 
used to validate mobility software for Mars rover 
missions. In Section 5, some realities of flight system 
implementations are highlighted as well as effects and 
impacts on autonomous mobility software development 
and validation. Brief recommendations are offered in 
Section 6 for dealing with some of the challenges and for 
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improving the validation process for future projects, 
followed by a summary and conclusions. 

2. Autonomous mobility and mission success 

Robotic vehicles for planetary surface missions are 
designed to effectively maneuver in a complex target 
environment and extend the reach of onboard science 
instruments beyond that of stationary landers. Whether 
the target environment is the planet surface or subsurface, 
mission success is in some way enabled by the basic 
mobility functionality. Autonomy is required to enhance 
surface missions by improving the effectiveness of the 
mobility function as a science-driven tool for achieving 
mission goals [7]. Accordingly, recent and planned 
surface missions include requirements that rely on 
autonomous mobility to achieve mission success. 

In 1997, the Mars Pathfinder Mission conducted a 
Microrover Flight Experiment (MFEX) using the 
Sojourner rover. The rover software design included a 
capability for low-level reactive navigation for the 
purpose of safely reaching targets of scientific interest in 
the area surrounding the lander. The rover was required 
to traverse to a target of opportunity to acquire 
spectroscopic measurements as part of mission success 
[3]. This could be accomplished by sequencing basic 
mobility commands or by using the reactive navigation 
functionality, and so this requirement was only loosely 
tied to autonomy from a validation standpoint. As the 
need for autonomous mobility increases it is reflected 
more explicitly in mission requirements against which 
software must be validated. 

The twin rovers launched by the MER project and the 
rover being planned for the MSL mission are explicitly 
required to use autonomy in support of mission success. 
Software designs for these rovers include autonomy 
capabilities of varying complexity for navigation, 
instrument placement, resource management, and science 
data gathering. General statements of the related 
autonomous mobility requirements are similar to the 
following: the rover(s) must be able to safely traverse 
some substantial minimum distance per day of operations 
in terrain of some reference complexity while maintaining 
estimated position knowledge within some small 
percentage of distance traversed [4, 81. The reference 
complexity of the terrain is typically as documented by 
images taken at Viking Lander (1970s) or Mars 
Pathfinder (1997) landing sites. Following a successful 
MER mission, the MSL terrain complexity may be 
expressed in terms of terrain traversed by MER rovers. 
Furthermore, the mobility requirements for MSL will 
likely call for increased autonomy to achieve primary 
mission capabilities of longer distance traverses and 
autonomous short distance approach to designated 
science targets followed by instrument placement (all 

with less interaction with mission operators than prior 
missions) [9]. 

In this paper, we limit the scope of our discussion to 
software validation issues related to autonomous mobility 
only. For the purpose of the discussion, we refer to 
autonomy software for surface mobility as that onboard 
software designed for data processing associated with 
sensing, perception, reasoning and decision-making for 
the purpose of directing servo-level execution. Therefore, 
we are addressing software at a higher level than 
servomotor control and at a lower level (in most cases) 
than symbolic planner-schedulers. Within this context, 
high-level autonomy includes perception, reasoning, 
decision-making, etc., while low-level autonomy includes 
sensor-based reactive motion, hazard detection and 
avoidance, and local navigation. High-level autonomous 
mobility software is often designed to interface with low- 
level autonomy software and, as such, is at least one 
architectural level removed from interactions with 
mobility hardware and its environment interactions. For 
this reason, high-level autonomy software evaluation can 
more readily be handled using verification methods (e.g. 
model checking and model-based reasoning [lo]). 

Low-level autonomous mobility software responds to 
perceptions and recommendations derived from high- 
level software and the sensor-based perception system. It 
can be verified to a limited extent using similar methods. 
However, the validation challenges increase considerably 
as we move deeper into the autonomous mobility system 
from software-software interactions to software-hardware 
interactions particularly due to transitions from 
determinism to non-determinism in software-induced 
system behavior. The non-deterministic system behavior 
manifests itself at the level of hardware-environment 
interactions, where the “rubber hits the road.” It is here 
where it becomes more difficult to establish that the 
system is actually capable of executing the mobility 
functions required for mission success. 

3. Non-determinism as “rubber hits road” 

Modeling, simulating and/or predicting the functional 
behavior of orbiter and fly-by spacecraft is facilitated by 
reasonably well behaved dynamics and operating 
environments. For such robotic spacecraft, conventional 
estimation and control techniques [l 1 J have similar 
effects on spacecraft behavior in simulation as they do in 
reality. This is due to the fact that the physical laws of 
orbital mechanics and planetary atmospheric 
aerodynamics are reasonably well understood and well 
behaved in space. Unfortunately, the complexities of 
interaction between mobility systems and planet surfaces 
dominate when the “rubber hits the road,” and the 
problems are sometimes compounded by reduced-gravity 
effects. The result is non-deterministic behavior as the 



system interacts with the world and increased uncertainty 
in how the autonomous mobility system will respond to 
operational commands. A few characteristics of the 
surface mobility problem that serve to illustrate this are 
described below. 

Mobility and navigation problems for outdoor rough 
terrain vehicles are characterized by high levels of 
difficulty and increased measurement uncertainty. This is 
due to the fact that complex motions outside of the 
ground plane occur quite frequently as the vehicle 
traverses undulated terrain, encountering multidirectional 
impulsive and resistive forces throughout. In addition, 
common mobility and navigation sensors often 
inadequately handle the tremendous variability of surface 
features and properties of outdoor terrain. Such sources 
of uncertainty in input interpretation and output execution 
reduce the predictability of system behavior. 

Wheeled mobility systems are also subject to 
undesirable wheel-terrain interactions that cause wheels 
to slip on rocks and soil. Frequent loss of traction due to 
wheel slip during traverses from one place to another will 
detract significantly from the ability to maintain good 
rover position estimates. These factors impact the ability 
to guarantee required accuracy of localization estimates. 

In soft soils, loss of traction due to excessive wheel 
slippage can lead to wheel sinkage and ultimately vehicle 
entrapment. It is possible for wheels to sink to soil depths 
sufficient to prohibit rover progress over terrain, thus 
trapping the vehicle at one location. This is also possible 
on soils with insufficient bearing strength to support the 
rover (incidentally, a property to which a look-ahead 
perception system may be insensitive). Such factors 
potentially impact our ability to guarantee compliance 
with traverse safety and/or distance requirements. 

How do we convince ourselves, then, that autonomous 
mobility software that induces non-deterministic behavior 
will perform well enough to execute mission functions as 
required? We respond to this challenge by conducting a 
validation testing program that aims to bind the relevant 
uncertainties to limits within which mobility requirements 
can be met with high probability. This requires extensive 
functional testing and system characterization. Thus, our 
approach is based on the notion that given sufficient 
testing, it is possible to make reasonably comfortable 
predictions about the software capabilities [ 11. 

4. Autonomous mobility software validation 

Flight system validation activities place emphasis on 
validating the implemented system design and include 
challenging the system to establish its operational limits 
through functional testing in nominal and off-nominal 
scenarios. Here, we briefly describe in general terms an 
approach used to validate autonomous mobility flight 
software to a level of acceptable confidence. 

We are still gaining valuable experience in rover 
surface missions building upon the first success in 1997 
with Sojourner, the MFEX rover. As such, validation 
methods are inherited to some extent from the technology 
development practices that led to Sojourner and continue 
today. These methods generally rely upon the availability 
of one of more prototypes of a flight rover referred to as a 
Software Development Model (SDM), followed by later 
availability of an Engineering Model (EM) rover that is 
very similar if not identical to the flight article. 

4.1 Reliance on physical rover models 

Depending on project resources and/or the maturity of 
the rover design early in project development, an SDM 
may also be an EM for all intents and purposes. More 
often than not, SDMs vary in hardware and software 
fidelity with respect to the flight rover from project to 
project. At a minimum, the SDM bears some similarity 
to aspects of the flight system under development 
(physical configuration, subsystem functionality, etc) but 
does not approach the fidelity of the EM. The higher the 
fidelity with respect to the flight article, the more value- 
added to the validation process by these prototypes. 
Availability of an SDM for use by rover flight software 
developers is preferred, recommended, and most valuable 
early in the project definition or development phases. 

An SDM rover is typically used in a preliminary test 
arena such as an indoor sandbox collocated with the 
software development laboratory. This physical testbed 
is equipped with a variety of reconfigurable terrain 
artifacts (and ideally, lighting options) that permit 
arrangements of realistic landscapes for mobility testing. 
Additional essentials include measurement systems for 
ground truth, data logging, and other means for test 
related documentation and post-analysis. Finally, this 
infrastructure is augmented by more realistic outdoor 
facilities that resemble the planetary terrain as closely as 
is practical given project resources. These facilities are 
used for realistic field trials to validate autonomy 
algorithms [ 121 and, eventually, operational readiness 
tests to validate required functionality. Field tests may 
include end-to-end operations using appropriate facilities 
and infrastructure including satellite communications 
between JPL and remote field sites [13]. The general 
validation approach for autonomous mobility software is 
hardware-focused and utilizes validation metrics such as 
requirements coverage, which ensure that all required 
functionalities are covered by at least one test [5 ] .  

4.2 Validation of Mars rover autonomy 

The steps taken to formulate and create the 
methodologies and experimentalltesting facilities used 
during Sojourner’s software development [2] were 



important steps toward enabling systematic performance 
evaluation and validation for later Mars rover prototypes 
as well. Evaluation of Sojourner rover autonomous 
mobility software for the MFEX mission activities 
consisted of many navigation trials in an indoor sandbox 
and outdoor trials in realistic terrain using SDMs. 
Simulation runs were also used as an alternative to 
laborious test setups (manual arrangements of rock 
distributions) that offered an automated means of 
achieving more complete coverage of software scenarios 
in lesser time than physical tests [2 ] .  The simulated rover 
runs were used to validate simulation predictions via 
comparison to real runs. Simulation was shown to 
accurately predict rover SDM behavior in a statistically 
significant manner for runs without failures [ 141. 

The MER autonomous mobility software validation 
uses similar methods performed in stages on an SDM and 
later on flight EMS. Early testing and validation of the 
autonomous navigation software was done using the 
Athena SDM rover running navigation trials in the JPL 
MarsYard [SI, an outdoor test facility. The Athena SDM 
differs in size and kinematic configuration from the MER 
design but utilizes functionally similar mobility and 
hazard detection hardware. Later validation was done in 
an indoor sandbox facility using the flight EM rovers by 
running a number of test cases under different terrain 
conditions to validate nominal and off-nominal 
functionality. Further validation plans include robustness 
and characterization testing in outdoor environments of 
increased variability. Such testing permits refinement of 
the many tunable parameter values that are characteristic 
of autonomy software and govern its performance. 

The validation program being contemplated for the 
MSL autonomous mobility software includes some of the 
same elements described thus far. The key autonomy 
technologies required for MSL mobility are presently 
under development and will undergo a validation process 
formulated by the Mars Technology Program [9]. 
Through this validation process, quantification of 
software and algorithm performance will be based on 
field experimentation as well as statistical results from 
simulations. Newly developed mobility (and other) 
autonomy algorithms will be validated prior to actual 
consideration by, and infusion into, the flight project. 
Thus, it represents a generalized validation process aimed 
at validating different new technologies on different 
robotic platforms (SDMs essentially) and in various 
conditions. Any specific autonomy software validated by 
this process and selected for use by MSL will still need to 
be validated on an MSL EM rover. Scenarios would be 
derived from autonomy requirements for long distance 
traverse and short distance approach to science targets. 

5. Validation challenges and flight projects 

Thus far we have discussed the fundamental challenge 
presented by non-determinism and a general validation 
approach used to deal with it, which is focused on 
hardware-based functional testing and computer 
simulations. Unfortunately, the challenges do not end 
there. In this section, we highlight some of the challenges 
that may be encountered when attempting to apply the 
validation approach within the flight project environment 
in the face of project implementation realities. 

5.1 Integrated schedule issues 

Flight systems are comprised of numerous subsystems 
whose respective schedules are in relative flux throughout 
the design and development phase. As projects go, 
subsystems rely on and are committed to other 
subsystems through a collection of receivables and 
deliverables of documents, hardware and software. 
Inevitable misalignments in the project integrated 
schedule must be continually adjusted within the finite 
time and resources allocated for project implementation. 
From the vantage point of software development, some of 
the possible ramifications include slips in schedule that 
result in late hardware deliveries (SDM or EM), rushed 
hardware deliveries that require re-work before becoming 
useful for software testing, and tight software 
development and release schedules that serve to reduce 
time allocated for validation testing on hardware. 

As emphasized earlier, surface mission projects are 
best served when autonomous mobility software 
developers are provided with hardware early. In our 
rover surface mission experience thus far, we have seen 
that flight systems do not always have the luxury of 
development schedules that permit sufficient time for 
extensive testing of EM rovers. Late hardware or the lack 
thereof coupled with insufficient time for thorough testing 
goes against the aim of our validation approach to bind 
performance uncertainties to limits within which mobility 
requirements can be met with high probability. This 
creates a situation wherein we risk falling short of 
meeting the challenges posed by non-determinism, and 
thus, our ability to reach conclusions about software 
capabilities and validated requirements. 

5.2 Facility issues 

In addition to integrated schedule issues, flight 
systems do not always have sufficient facilities or 
resources to conduct extensive testing of rovers in 
realistic (physically similar to destination) environments. 
As the requirements for autonomous mobility become 
more complex relative to the Mars Pathfinder MFEX, the 
importance of the physical test environment fidelity 
increases. The bulk of mobility and navigation software 
validation cannot continue to be done with high 



confidence based solely on SDM/EM exercises in indoor 
sandbox facilities or computer simulations. Sandboxes 
are adequate for early incremental development and 
isolated testing of functionality and performance. 
However, the richer test environment offered by planetary 
analogue natural terrain is essential for characterization 
and exposure of software design problems that may not 
arise in the sandbox. 

An interesting dichotomy occurs in the transition from 
SDM to EM rovers with respect to testing and later 
validation. When the time comes at which a flight-like 
EM is available for use by autonomous mobility software 
developers, test activities migrate to these higher fidelity 
platforms. Due to the usual high expense and criticality 
of EM and flight hardware there is a general (and 
justified) conservatism associated with the handling of the 
hardware. Developers and test conductors are reluctant to 
risk breaking the hardware and, to some extent, degrading 
its pristine condition through the course of aggressive 
testing on rough terrain. This is contrary to the type of 
testing needed to validate autonomous mobility software. 
It serves to steer testing further away from analogue 
environments where the validation testing would be more 
meaningful, to more benign and less risky settings in the 
sandbox. This is an important issue because the flight 
rover(s) proper may never be extensively tested on 
analogue terrain until reaching the planetary destination 
when the surface mission begins. The subset of critical 
functionality is certainly validated on the flight rover(s), 
but this occurs in the confines of clean project 
laboratories where the terrain consists of protective floor- 
mats, and where critical metrics such as actuator usage 
must be carefully monitored relative actuator lifetime. 
Meanwhile, the aspects of validation discussed herein 
must be done on EMS in “dirty” testbed environments. 

Since MFEX, we have started to outgrow existing 
rough terrain facilities such as the various JPL sandboxes 
and the current JPL Marsyard. With MER and MSL 
requirements on traverse distance and related accuracies 
larger facilities are needed to support the validation effort. 
Furthermore, terrain facilities of greater variability are 
needed since the sandboxes and the MarsYard are 
essentially flat and devoid of continuous courses of 
sufficient length and variable terrain types to adequately 
support long distance traverse trials. This is no substitute 
for the advantages to be gained from remote field trials, 
however, when practical. 

Computer simulation facilities are considered by 
many to be an attractive validation option in several 
situations: (1) in lieu of available rover hardware, (2) to 
improve test case coverage when there is insufficient time 
or resources for extensive hardware tests, (3) when there 
is a desire to avoid aggressive tests with EM rovers, and 
(4) when logistics of remote outdoor testing in analogue 
terrain are impractical. At present, however, we cannot 

model physical environment interactions associated with 
vehicle motion (i.e., wheel-terrain effects, soil mechanics, 
vehicle dynamics, etc.) well enough to rely on 
simulations alone for validating autonomous mobility 
software. A balance must be struck between functional 
hardware-based testing and high-fidelity simulation [ 151 
that achieves the aim of the validation process. 

5.3 Impact on autonomy performance and usage 

In worst-case scenarios, flight development schedule 
and facility issues discussed above can combine to 
significantly impact flight software development and 
performance, as well as the degree to which validation is 
achieved and autonomy capabilities are actually exercised 
during a mission. A potential domino effect can occur 
that comes full circle to impact autonomy technology 
development and infusion for future missions. 

Delayed hardware deliveries lead to deferment or 
descopes of characterization testing, which we have 
declared as an essential activity through which software 
developers establish fine-tuned sets of parameters that 
govern autonomy performance. While Monte Carlo 
computer simulations of reasonable fidelity add definite 
value, characterization of physical mobility systems in 
physical environments directly feeds back into autonomy 
software development and enables more meaningful 
validation. This test and development feedback loop is a 
“software-rover system identification” process of sorts, 
which robot software developers are quite familiar with in 
common practice. It may be thought of as a robotics 
“mind-body’’ exercise that can easily produce different 
sets of configuration parameter values for seemingly 
identical hardware platforms (e.g., the twin MER rovers 
and their EMS). Characterization testing could effectively 
be performed during the post-launch, pre-landing periods 
on EM rovers; however, at such a late stage such testing 
could easily turn into increased regression testing. 

Schedule slips and inadequate facilities lead to 
thorough validation of only the most basic functionality. 
In this case, the autonomy capabilities are less likely to be 
used by conservative mission operations personnel if they 
are deemed as not absolutely necessary for achieving 
minimum mission success. The fact that the minimally 
tested autonomy remained part of the mission baseline 
capability is testament to the belief that it would have 
enhanced the mission and perhaps the science return. If it 
is not sufficiently validated, then it is not sufficiently 
trusted, and the development investment and enhanced 
science return is lost for the mission. At best, we are 
doomed to resume the validation process for a future 
mission should a similar capability be required. 

In the event that autonomy software is sufficiently 
validated in the eyes of flight system engineers, perhaps 
the remaining challenge is presented by a conservative 



mission system that is reluctant to use the capability until 
late in the mission operations. This potential to 
incompletely exercise the full autonomy capability of the 
software can result in misleading post-mission 
assessments about the level of autonomy included among 
mission capabilities (or worst, reduced science return). In 
this case, there is no distinction between autonomy 
functions that are available versus those that were actually 
exercised during the mission. This fosters a misperception 
of the actual state of the art of flight autonomy, which 
influences the focus of future technology development 
and investments. The final impact is that technology 
development funds may be allocated to new starts that 
reinvent the wheel, when all that may be necessary is 
evaluation and further validation of existing autonomy 
flight software. 

6. Recommendations 

As NASA continues to design, develop, and operate 
missions requiring autonomy for surface mobility, we 
will gain valuable experience in determining the 
validation methods that work best for the domain. 
Indeed, verification and validation of autonomy software 
systems is a developing art as witnessed by the frequent 
organization of recent workshops dedicated to the topic 
[6, 16, 171. In the meantime, there are a number of steps 
we can take to improve upon the current approaches in 
light of the challenges discussed above. 

To deal with some of the challenges of validating 
autonomous mobility software, the validation process 
must include substantial testing in more realistic 
environments. This will require investments in facilities 
and supporting infrastructure. In particular, new rough 
terrain facilities should be contemplated of size and 
features commensurate with distance goals and terrain 
variations expected for future missions. Discussions 
among interested managers and program offices have 
already begun towards this end. Representative examples 
of large-scale outdoor test courses for ground vehicle 
testing exist and are being used in DARPA and DOE 
funded research programs. They include a 100-acre 
testbed at Southwest Research Institute [18] and the 226- 
acre Robotic Vehicle Range [19] at Sandia National 
Laboratories. These facilities are several orders of 
magnitude larger than the JPL Marsyard. 

Flight projects should plan to build enough SDhUEM 
platforms to ensure that the mobility software 
development team has a dedicated platform to work with 
throughout project development and validation activities. 
This would alleviate contention for testbed hardware 
usage among subsystems. It would also allow maximal 
time for software-rover system identification (as 
described in Section 5.3 above). Investment in high- 
fidelity simulation capabilities should continue so that 

they are available to supplement hardware testing, 
especially if an SDhUEM is not available in the early 
software development phase. The Mars Technology 
Program is making strides in this direction [9]. However, 
to further enhance validation capabilities, new and 
emerging computing methods should be adopted that can 
be augmented with simulation capabilities to compensate 
for any lack of realistic facilities and/or validation time in 
the project schedule. A good example of this is a means 
for automated testing and test case generation with high- 
fidelity simulation in the loop. Some progress in this 
regard has been made at the Naval Research Laboratory 
where an approach based on genetic algorithms has been 
developed to automate an emulation of the process that 
test engineers follow to search for interesting fault 
scenarios in a space of possible fault scenarios [20]. Such 
a search is otherwise done sparsely and more slowly by 
the manual process used by test engineers. Experience 
using this approach suggests that if offers ,advantages 
over other automated and manual testing methods used 
for validating intelligent software controllers [20]. 

Finally (for now), efforts should be made to define 
and utilize autonomy performance metrics to facilitate 
mobility software validation. Good performance metrics 
for autonomy will allow us to describe autonomy 
capabilities in quantitative terms. This would be directly 
useful for convincing project management (and the 
conservative mission operator) not only that a capability 
exists, but also how good it is with respect to some well- 
defined and easily understood metric of performance. 
Performance metrics for autonomy will also enable us to 
write better requirement statements that are falsifiable, 
which is a pre-requisite for requirement validation [ 11. 
Good examples of metrics that are germane to 
autonomous systems are not common knowledge but 
have been a topic of considerable thought for the past 
several years. A notable white paper sums up the state of 
such thought as evolved from an annual workshop on the 
topic sponsored initially by NIST and most recently with 
co-sponsorship including NASA [15]. 

7. Summary and conclusions 

In the preceding sections, we emphasize the 
increasingly stronger relationship between autonomous 
mobility and surface mission success criteria. We discuss 
non-deterministic aspects of the surface mobility problem 
that present challenges for autonomy software validation. 
A validation approach being used to meet the challenges 
is generally described and some effects of flight 
schedules and deliveries on successful implementation of 
the approach are highlighted. Finally, recommendations 
are offered for dealing with the challenges presented and 
include: expansion of test and validation facilities, early 
hardware delivery to software developers, automated 



simulation-based testing, and adoption of autonomy 
performance metrics. 

We acknowledge that functional testing will not 
expose all problems with autonomous mobility software. 
It should be used in addition to formal verification where 
applicable. We advocate the notion that extensive testing 
in realistic settings will enable characterization, which 
will enable software tuning and improve predictability, as 
well as our ability to diagnose problems that arise during 
operations. Extensive testing will increase the likelihood 
that the full autonomy capability being validated will be 
exploited on the mission and lead to healthier returns on 
the investments made to develop the software capability. 
Furthermore, this will permit efficient reuse, and accurate 
assessments of the state of the art, of autonomy software 
technology for future missions. 
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