CLARAty Decision Layer Overview

Tara Estlin
May 16, 2002

CLARAty Decision Layer Team: Tara Estlin and Caroline Chouinard

CLEaR Team: Forest Fisher, Dan Gaines and Steve Schaffer

Talk Organization

Decision Layer capabilities

DL system architecture (as provided by CLEaR)
Examples of DL domain models

Code status and documentation

Decision Layer Capabilities

Decision Layer Summary

Provides intelligent decision-making capabilities

Designed to contain and enable integration of:
— planning/scheduling techniques |
— executive techniques
— other high-level autonomy techniques (e.g. data analysis)

Also intended to provide flexible interface to CLARAty
Functional Layer

Current DL instantiation provided by CLEaR Framework

— CLEaR: Closed Loop Execution and Recovery

— Integrates CASPER dynamic planning system (JPL) with TDL
executive (CMU)

Decision Layer Capabilities

Autonomous rover-command generation to achieve high-
level science and engineering goals
— Given:

Initial state: Rover at position (x,y) w/ certain resource levels
* Desired state: Achieve science activities A,Band C
— Produce: |

* Plan (i.e., list of commands) to make desired state true

E.g., navigate to loc A, raise mast, take image, lower mast, navigate to loc B,
etc.

Decision Layer Capabilities, cont.

» Use of both declarative and procedural domain information

— Activity X uses “20 Watts of Power” and requires “Camera to be on”

— Activity A must be scheduled before Activity B within allowable range
[10 sec, 30 sec]

— Activity Z breaks down into sub-activities Z1, Z2 & 73
— If condition P holds then perform activity Q

« Reasoning about state, resource and temporal constraints
» Timelines represent plan’s effects over time

RESOURCE

STATE

Time

Decision Layer Capabilities, cont.

e Command execution and monitoring
— Dispatch commands to FL and monitor relevent state and resource
information -
« Exception handling
— Handle exéeptions or failures
— E.g., must retry rock grasp due to initial failure
— E.g., motor overheats so disable arm

e Re-planning in light of changing context or goals

— Modify global plan when conditions change

— E.g., discard science target or traverse due to unexpected low power
reserves

— E.g., add science target due to unexpected opportunity

Decision Layer System Overview

CLEaR System Approach

« CLEaR integrates two software components:
— CASPER planning and scheduling system

Initial plan generation

Reasoning about resource, state and temporal constraints
Global knowledge of plan and state/resource timelines
Dynamic re-planning when state or goals changes

Declarative constructs for model information (e.g., activity pre-conditions and
effects)

— TDL executive

Task expansion based on current conditions
Execution monitoring

Task synchronization

Exception handling

Procedural constructs for model information (e.g., conditionals, iterative
behavior)

« CLEaR task examining how planning and executive capabilities can be
closely integrated to provide a more robust and responsive system

CLEaR High-level View

Goals & Init State

Path queries;
path lengths

Resource querie:
estimations

S5

Path queries;
waypoints

Command status;

state/resource updates Commands

Functional Layer / Simulator

ASPEN/CASPER System Architecture

Goals &
Init State

Network
Constraint
Propagation

Activity, timeline, & conflict info

Activity info
Conflict status T

ADB modifications f@?
(e-g., add, modify, delete)

—>

Search
commands

<,

Path queries;
path lengths

Timeline Activities
updates Activity
permission
ASPEN updates

Act, state . Activities to
& resource Act status; execute
updates TL updates

TDL Executive

TDL System Architecture

ASPEN / CASPER Planner

Plan
activities

Activity/TL
updates

State/resource
updates

Global state
updates

Register
tasks

Task/state
updates

TT/agenda
info

Command status;
state updates

Task mgmt
& state

Path queries;
waypoints

Commands

Command status; o J
state updates ommands
' L

Functional Layer / Simulator 12

Decision Layer Model Examples

13

Plan
Activity

Resource
timelines

Example ASPEN Plan

imeline unit: [1998-092/15:39:59, 1998-092/18:53:59) sun_angle_sv0 i5 150
imeline unit: {1998-092/06:19:59, 1998-092/08:39:59] sun_angle_sv0 is 30
imeline unit: [1998-082/08:00:20, 1998-092/16:00:00) orbiter0 is 0

imeline unit: [1998-092/08:00:20, 1998-092/16:00:00] orbiter is 0

State
timelines

14

Sample ASPEN Activity Definition

Activity go_to_location {
position fromx, fromy, fromz, X, y, z;
angle fromheading, heading;
distance dist; // est. traverse distance
real speed = 1.655; // meters per min
real goto_power = 330.0; // Watts
int goto_energy; / Watt-hours

timeline_dependencies =

<fromx, fromy, fromz, fromheading> <- rover_orientation_sv;
dependencies =

dist <- path_distance(fromx, fromy, x, y, pathplanner),

duration <- traverse_time(dist, speed, duration, ...),

goto_energy <- calculate_rover_energy(goto_power, duration);
reservations =

day_night_sv must_be "day",

rover_energy_sv use goto_energy,

health_sv must_be "nominal”,

rover_orientation_sv change_to <x,y,z,heading> at_end;

%

15

Sample ASPEN Resource & State Defs

Resource shovel { type = atomic; };

Resource spectrometer { type = atomic;

%

Resource battery {
type = depletable;
capacity = 69; // watts
min_value = 0;

¥

State_variable rover_orientation_sv {
// X, 'y, z, heading
states = <real, real, real, real>;

default_state = <0.0, 0.0, 0.0, 0.0>;
}

State_variable mast_sv {

states = (""stowed", "deployed");

default_state = "stowed";

|5

16

Sample TDL Task Definition

GOAL stepToLocation(TaskData *taskData, double destPosTol, int time_bound)
{

float targetX, targetY, targetZ, targetHeading, priority;

if((tdIVars[TIME].getCurrentValue() < tiine_bound) &&
(tdIVars[TASK_TEMPORAL_FAILURE].getCurrentValue()))
{ .

Spawn turnInPlace(taskData,time_bound) With Wait;

if(!commandMap((int)(td1Vars[CUR_TRAVERSE_TID].getCurrentValue())].isSucceeded())
{

cout<<"stepToLocation::turnInPlace returned without completion. NOT proceeding with goto\n"<<flush;

}
}

if((tdIVars[TIME].getCurrentValue() < time_bound) &&
(tdIVars[TASK_TEMPORAL_FAILURE].getCurrentValue()))
{

tid = sendNavToCommand(targetX, targetY, targetZ, targetHeading, destPosTol, position_update_frequency);
Spawn monitorStepCompletion(taskData, tid, time_bound) With Wait;
if(lcommandMap(tid].isComplete())

{

Spawn abortCurrentGoTo(taskData) With Wait; //send an all-stop

commandMap|tid].complete(FAILED);
return;

}

18

Sample TDL Monitor Definition

MONITOR stepCompletion(TaskData *taskData, int tid, int time_bound)
serial, period 0:0:2.0, maximum trigger 1

{
if(commandMap(tid].isComplete())

{
cout<<"stepCompletion: TRIGGER (task compl)\n"<<flush;
TRIGGER();

}
if(tdlVars TASK_TEMPORAL_FAILURE].getCurrentValue())

{
cout<<"stepCompletion: TRIGGER (temporal failure)\n"<<flush;
TRIGGER();
}
1f(tdlVars[TIME].getCurrentValue() >= time_bound)
{
cout<<"stepCompletion: TRIGGER (time bound = ...\n”<< flush;
TRIGGER();

}

Decision Layer Code Status and
Documentation

20

Status of Code

* System requirements

Currently developed using Sparcworks compiler, Solaris 2.6 & 2.8

— Have created working binary for Solaris 2.7 (telerobotics sparcs)

Currently porting code to g++ under Linux

« CLARAty Repository

Have not checked in yet
Holding on paperwork and porting code

* Model information

Have ASPEN and TDL models based on FY01 scenario
s Work for both R7 & R8 with small parameter changes
o Currently maintain two separate models for ASPEN & TDL
Model(s) primarily reason about traverses, comm and science activities, and power
and memory resources
DL designed to receives updates from FL for:
* Position, memory & energy
+ Currently extending to receive map updates

Model(s) will need to be extended for additional scenarios and/or as new rover
components are added or tested (e.g., arm, mast, comm)

s System source code may require extensions as well (e.g., optimization)

21

Documentation

Some documentation exists on CLARAty web page
— http://claraty/Development/DIL%20Documentation/index.html

— Will be extending this to have step-by-step instructions for running FY01
(and future) scenarios in simulation and on rovers

ASPEN/CASPER documentation

— http://www-aig.jpl.nasa.gov/public/planning/aspen/

— http://www-aig.jpl.nasa.gov/public/planning/casper/
— ASPEN User’s Manual can be found at:

 http://www-aig.jpl.nasa.gov/public/planning/aspen/usersguide. pdf

TDL documentation
— http://www-2.cs.cmu.edu/~tdl/

— TDL Quick Reference Manual can be found at:
o http://www-2.cs.cmu.edu/~tdl/tdl .html

22

hitp://claraty/Development/Development Tools/vxworks-rocky-howto/dl-fl-api.htm

DRAFT

Decision Layer - Functional Layer Commanding/Update API

In the context of this year's CLARAty and CLEaR demonstrations, this document is an attempt to clarify the interface between TDL and the FL.
code.

It's currently a draft, intended for iteration/feedback from members of the team.

NOTE: Time is not being represented in the FL this year. It is up to components in the DL to maintain their own clock.

Category Commands (DL->FL) Updates (FL->DL) Semantics
vvvvvvvv e state updates:
bundled(ram_storage, ® Resets the global timer and
FOVEr_energy) initializes rover_energy and
Initialization start_rover() ¢ task status: ram_storage
bundles(task_id, ® Returns immediate resource
{succeeded, failed}) and success message
® state update: i ¢ Velocity of all actuators on
bundled(position_x, the vehicle becomes zero.
position_y, position_z, ¢ For now, we're only
Control all_stop() position_heading) stopping the wheels, but this
e task status: bundled(task_id, should eventually include
{succeeded, failed}) mast and arm operations.

¢ Should be issued prior to
go_to_location if path
planning (GESTALT) is not
in use. position_heading

® state update: argument should be the
bundled(position_x, ; heading from current

of 5 2/6/2003 11:44 AM

of §

Navigation

turn_in_place(position_heading)

http://claraty/Development/DevelopmentTools/vxworks-rocky-howto/dl-fl-api.hitm

position_y, position_z,
position_heading)

task status: bundled(task_id,
{succeeded, failed})

i

i

location to the goal.
Position state update will be
issued upon completion,
along with a task_id and the
task status.
Position_heading is
measured in degrees East of
North

Navigation

go_to_location (position_x,
position_y, position_z(optional),
position_heading(optional))
"returns” (position_update,
interval)

state update:
bundled(position_x,
position_y, position_z,
position_heading)

task status: bundled(task_id, ?

{succeeded, failed})

turn_in_place should be
issued prior to
go_to_location if path
planning (GESTALT) is not
in use.

This command will use the
GESTALT path planner
when it is available.

Servo to location
(position_x, position_y)
State updates will be
broacast at a fixed frequency
for the duration of the
activity, and cannot be
queried asynchronously.

No periodic updates will be
requested in the command .
for this version.

Task status will be

broadcast upon completion |
and cannot be queried. !
Vehicle pose will be
contained in this update.
Position_heading is
measured in degrees East of
North

Uses GESTALT navigation
algorithm to avoid obstacles

2/6/2003 11:44 AM

http://claraty/Development/Development Tools/vxworks-rocky-howto/dl-fl-api.him

while driving to location
(position_x, position_y)
¢ State updates will be
broadcast at a fixed
frequency for the duration of
navigate_to_location(position_x, e state update: the actibity, and cannot be
position_y, position_z(optional), bundled(position_x, queried asynchronously.
Navigation pOs%t%on_heading(optional), pos?t?on_y, pqsition_z, e No periodi.c updates will be
position_tolerance) position_heading) requested in the command
“returns” (position_update, . * task status: bundled(task_id, for this version.
interval) {succeeded, failed}) e Task status will be
broadcast upon completion
and cannot be queried.
Vehicle pose will be
contained in this update.
¢ Position_heading is
measured in degrees East of
North
® Vehicle will be commanded
e state update: to stol? .immediately..
bundled(position_x, ¢ A position update? will be
o o sent after the vehicle has
Navigation abort_current_go_to() pos?t%on_y, pqsﬂmn_z, stopped.
position_heading) o C 1 " ¢
o task status: bundled(task_id, urrently exccuting goto
{succeeded, failed}) | will termmate} with a failure.
| @ The abort (this command)
- will return success.
| ® This.command never causes
the vehicle to move --
instead, the vehicle's
e state update: knowledge about its current
set_current_pose(position_x, bun‘dlled(positiqn‘_x, ' * position is set a}?solutely to
Navigation position_y, position_z(optional), pos@on_y, position_z, f. the arguments given.
position_heading) position_heading) e A position update will be
e task status: bundled(task_id, sent with the updated
{succeeded, failed}) position.

of 5 2/6/2003 11:44 AM

http://claratyfDevelopment/Developmen

http://claraty/Development/DevelopmentTools/vxworks-rocky-howto/dl-fl-api.htm

¢ Position_heading is
measured in degrees East of

e state update: * Memory usage state update
bundled(ram_storage, will be broadcast upon
Downlink transfer_data() rover_energy) completion, along with a
e task status: bundled(task_id, task_id and the task status.
{succeeded, failed}) ¢ No asynchronous queries.

e Science activities of
different types (A, B, ...)

j will consume different

amounts of time, power, and

¢ state updates: Co memory. These values will
¢ do_image() bundled(ram_storage, be set in the FL at startup

Science ¢ do_spectrometer_read() rover_energy) ' (e.g., via initialization file).
* do_dig() ¢ task status: bundles(task_id, e Memory usage and power

{succeeded, failed}) remaining state update will

be broadcast upon
' completion, along with a
task_id and the task status.
¢ No asynchronous queries.

| This command can be calléd
at any point to get periodic
broadcasts of power
remaining -- this is the only
state that's currently
available via this method.

| * Call with interval == -1 to

| turn off power updates.

| @ Currently, interval is
restricted to be no less than

5 (seconds). |

broadcast_state_update * state updates: rover_energy 4

State U; i
pdates "returns" (state_name, interval) * task_status: n/a

| o This command is
| used to simulate the

tof5 2/6/2003 11:44 AM

of 5

Time

warp_time(num_seconds)

http://claraty/Development/DevelopmentTools/vxworks-rocky-howto/dl-fl-api.htm

* state updates:
bundled(ram_storage,
rover_energy)

s task status:
bundles(task_id,
{succeeded, failed})

effect of advancing
time in the DL
Rover_energy is
appropriately drained
according to the
number of seconds
"elapsed” and the
per-second drain
value

+

2/6/2003 11:44 AM

CLARAty Connector

Thread 1

Listener

Decision Layer | WITS

Functional Layer

Thread 1

Id:4 -pos_x:10 pos y:3

Id:5 status: success

Omd->Object Mapping

command-object-mappings —
See 'users -guide.html' in this
directory for

documentation. A ‘# at the sta
of aline indicates a comment.
all_stop : rover

go_to_location : rover
go_to_location_open_loop : rove]
abort_current_go_to : rover
turn_in_place: rover

Thread 2

Talker

[FLCnd |

\ 4

Command Format - ASCII:

“(<emd-name> (args [(<key> <value>)]*)
(returns [(<state-name> <update-interval>)]*))"

Listener

—————————— — = Sockets

—>

Assign Unique ID

Thread 2

Thread 3

!

Execution Engine

FIFO

eue

Gotoloc (x=10.0,:y=0.0)

ReadSpectrometer

Thread 4...n

Active Object —
Runs its own thread

FIFO Queue

FL_Message

/

N

FL_Cmd

FL_Update

Or

Execute Cmd

| L—TANTA-A- R A an - s nEA~)

'}_

Spawn Thread/Cmd

[=T UOUTO T OTT IO

— Create Object

(duration of cmd)

L Persistant Object
(duration of system)

Can write
an EDR

LAN. 12/02

