
3
e

l
4

k

ccr
42

$
4

d
)

0

8

Td
d

cd
m

0

d

d

k
"

a" '
d

d
)

c
,

m

aJ
8
crc d

%

e 4

8
ac:

s

Talk Organization

Decision Layer capabilities
DL system architecture (as provided by CLEaR)
Examples of DL domain models
Code status and documentation

2

M

Decision Layer Summary

Provides intelligent decision-making capabilities
Designed to contain and enable integration of:
- planninghcheduling techniques
- executive techniques
- other high-level autonomy techniques (e.g. data analysis)

Also intended to provide flexible interface to CLARAty
Functional Layer
Current DL instantiation provided by CLEaR Framework
- CLEaR: Closed Loop Execution and Recovery
- Integrates CASPER dynamic planning system (JPL) with TDL

executive (CMU)

4

s

*

Decision Layer Capabilities, cont.
Use of both declarative and procedural domain information
- Activity X uses “20 Watts of Power” and requires “Camera to be on”
- Activity A must be scheduled before Activity B within allowable range

[lo sec, 30 sec]
- Activity Z breaks down into sub-activities Z1,Z2 & 23
- If condition P holds then perform activity Q

Reasoning about state, resource and temporal constraints
Timelines represent plan’s effects over time

Time

6

Decision Layer Capabilities, cont.

Command execution and monitoring
- Dispatch commands to FL and monitor relevent

information .

Exception handling

state and resource

- Handle exceptions or failures
- E.g., must retry rock grasp due to initial failure
- E g , motor overheats so disable a m

Re-planning in light of changing context or goals
- Modify global plan when conditions change
- E.g., discard science target or traverse due to unexpected low power

- E.g., add science target due to unexpected opportunity
reserves

7

CLEaR System Approach
CLEaR integrates two software components:
- CASPER planning and scheduling system

Initial plan generation
Reasoning about resource, state and temporal constraints
Global knowledge of plan and statehesource timelines
Dynamic re-planning when state or goals changes
Declarative constructs for model infomation (e.g., activity pre-conditions and
effects)

Task expansion based on current conditions
Execution monitoring
Task synchronization
Exception handling
Procedural constructs for model information (e.g., conditionals, iterative
behavior)

- TDL executive

CLEaR task examining how planning and executive capabilities can be
closely integrated to provide a more robust and responsive system

9

CLEaR High-level View
Goals & Init State

/

Resource queries;
estimations

-

Commands
Command status;

statehesource updates

Functional Layer / Simulator
10

-1

c

I
I I

I
A

I
C

F

T

-3 d (d

d

-

1,
+
t

pj
0

"

u

6
)

c

Plan
Activity.

Resource
timelines

Example ASPEN Plan

b State
timelines

14

Sample ASPEN Activity Definition
Activity go-to-location {

position fromx, fromy, fromz, x, y, z;
angle fromheading, heading;
distance dist; // est. traverse distance
real speed = 1.655; // meters per min
real goto-power = 330.0; // Watts
int goto-energy; // Watt-hours
...

timeline-dependencies =

dependencies =

<fromx, fromy, fromz, fromheading> <- rover-orientation-sv;

dist <- path-distance(fromx, fromy, x, y, pathplanner),
duration <- traverse-time(dist, speed, duration, . . .),
goto-energy <- calculaterover-energy(got0-power, duration);

reservations =
day-night-sv must-be "day",
rover-energy-sv use goto-energy,
health-sv must-be "nominal",
rover-ori ent at ion-sv c hange-t o <x, y , z, heading> at-end;

15

s 0

v3

+

+ I
E

0

Q

E

a,
k

0

k

0

k

a

Q

k

m

.m

c,

c
,

.
r
(
 I

? zi $

z .m
 1

a,
Q

.y

.
m

.
m

0

.
d

E 0

cd

d)
0

cd

c
,

.
h

r
c
I

c
,

.
m

0

II 52
3

c-,

Sample TDL Task Definition
GOAL stepToLocation(TaskData *taskData, double destPosTo1, int time-bound)
{

float targetx, targetY, targetZ, targetHeading, priority;
...
if((tdlVars[TIME].getCurrentValue() < time-bound) &&

(! tdlVars [TASK-TEMPORAL-FAILURE] .getcurrentvalue()))
{
Spawn turnInPlace(taskData,time-bound) With Wait;
if(! commandMap [(int) (tdlVars [CUR-TRAVERSE-TID] . get Currentvalue())]. isSucceeded())

{
cout<<"stepToLocation: :turnInPlace returned without completion. NOT proceeding with goto\n"<<flush;
...

I
I

if((tdlVars[TIME] .getcurrentvalue() < time-bound) &&
(! tdlVars[TASK-TEMPORAL-FAILURE] .getCurrentValue()))

{
tid = sendNavToCommand(targetX, targetY, target& targetHeading, destPosTo1, position-update-frequency);
Spawn monitorStepCompletion(taskData, tid, time-bound) With Wait;
if(! commandMap[tid] .isComplete())

{
Spawn abortCurrentGoTo(taskData) With Wait; //send an all-stop
commandMap [tid] .complete(FAILED);
return;
1

... 18

Sample TDL Monitor Definition

MONITOR stepCompletion(TaskData *taskData, int tid, int time-bound)
serial, period 0:0:2.0, maximum trigger 1
{
if(commandMap[tid] .isCompleteO)
{
cout<<"stepCompletion: TRIGGER (task compl)h"<<flush;
TRIGGERO;

I

{
if(td1Vars [TASK-TEMPORAL-FAILURE] . getCurrentValue0)

cout<<"stepCompletion: TRIGGER (temporal failure)\n"<<flush;
TRIGGERO;

1

{
if(tdlVars[TIME] .getCurrentValueO >= time-bound)

cout<<"stepCompletion: TRIGGER (time bound = . . . h"<<,flush;
TRIGGER();
I
...

1

19

1

52:
0

m

E s
0

0

CI

c
)

B

Status of Code
System requirements
- Currently developed using Sparcworks compiler, Solaris 2.6 & 2.8
- Have created working binary for Solaris 2.7 (telerobotics spares)
- Currently porting code to g++ under Linux

0 CLARAty Repository
- Have not checked in yet
- Holding on paperwork and porting code

- Have ASPEN and TDL models based on FYO1 scenario
Work for both R7 & R8 with small parameter changes
Currently maintain two separate models for ASPEN & TDL

Model information

- Model(s) primarily reason about traverses, comm and science activities, and power
and memory resources

- DL designed to receives updates from FL for:
Position, memory & energy
Currently extending to receive map updates

- Model(s) will need to be extended for additional scenarios and/or as new rover
components are added or tested (e.g., arm, mast, comm)

System source code may require extensions as well (e.g., optimization)

21

Documentation

Some documentation exists on CLARAty web page
- http ://~laraty/Development/DLO/o2ODocumentatioii/index. htn~l.
- Will be extending this to have step-by-step instructions for running FYOI

(and future) scenarios in simulation and on rovers
ASPENKASPER documentation
- http : //www -aig . j p I. nasa. godpub1 iclplannin giaspen!
- http ://www-aig .j gl.nasa. ~ov/public/planninp;/cas~e~/,
- ASPEN User’s Manual can be found at:

I.lttp://www-ai~.lpl.nasa.~ov/ptrblic/plannin~/as~en~use~s~ui~e.~df:

TDL documentation
- http ://w w w -2. cs . emu. edu/-tdl/
- TDL Quick Reference Manual can be found at:

http ://w.’ivw -2. c s . cmu . edu/- tdl/ tdl . h tinl.

22

DRAFT

Decision Layer - Functional Layer CommandingKJpdate API
In the context of this year's CLARAty and CLEaR demonstrations, this document is an attempt to clarify the interface between TDL and the FL
code.

It's currently a draft, intended for iteratiodfeedback from members of the team.

NOTE: Time is not being represented in the this year. It is up to components in the DL to maintain their own clock.

Jommands (DL->FL)

tart-rover()

Jpdates (FL->DL)

state updates:
bundled(ram-storage,
rover-energy)

bundles(task-id,
{succeeded, failed})

task status:

_. - 1 - 1 - _ - ~ I I - -
state update:
bundled(position-x,
position-y, position-z,
posi tion-heading)

{succeeded, failed})
task status: bundled(task-id,

state update:
bundled(position-x,

semantics

Resets the global timer and
initializes rover-energy and
ram-storage
Returns immediate resource
and success message

Velocity of all actuators on
the vehicle becomes zero.
For now, we're only
stopping the wheels, but thi!
should eventually include
mast and arm operations.
Should be issued prior to
go-to-location if path
planning (GESTALT) is not
in use. position-heading
argument should be the
heading from current

I ~- ~ ~ _I _I-. I--^I_--I--I^ ~ -

of 5 2/6/2003 1 1 :44 AM

urn-in-place(posi ti on-heading)

;o-to-location (position-x,
)osition-y, position-z(optional),
)osi tion-heading(optiona1))
returns" (position-update,
n terval)

posi tion-y, position-z,
position-heading)

{succeeded, failed})
task status: bundled(task-id,

state update:
bundled(position-x,
position-y, position-z,
position-heading)

{succeeded, failed})
task status: bundled(task-id,

location to the goal.
Position state update will be
issued upon completion,
along with a task-id and the
task status.

measured in degrees East of
North
turn-in-place should be
issued prior to
go-to-location if path
planning (GESTALT) is not
in use.
This command will use the
GESTALT path planner
when it is available.

(posi tion-x, posi ti on-y)

broacast at a fixed frequenc!
for the duration of the
activity, and cannot be
queried asynchronously.
No periodic updates will be
requested in the command
for this version.
Task status will be
broadcast upon completion
and cannot be queried.
Vehicle pose will be
contained in this update.

measured in degrees East of
North
Uses GESTALT navigation
algorithm to avoid obstacles

Position-heading is

- - 111 -"- I_ I _I I -

Servo to location

State updates will be

Position-heading is

I_- _^I__ l_l "~ - - I ~ x̂

O f 5 2/6/2003 1 1 :44 AM

http://claratyfDevelopment/Developmen tTooldvxworks-rocky- howto/dl-fl-apihtin

iavigate-to-location(position-x,
,osition-y, position-z(optional),
,osition-heading(optional),
,osition-tolerance)
returns” (position-update,
nterval)

ibort-c urren t-go-to ()

;et-current-pose(position-x,
josition-y, position-z(optional),
Josition-heading)

state update:
bundled(position-x,
position-y, position-z,
posi tion-heading)

{succeeded, failed})
task status: bundled(task-id,

state update:
bundled(position-x,
position-y, position-z,
position-heading)

{succeeded, failed})
task status: bundled(task-id.

state update:
bundled(posi tion-x,
position-y, position-z,
posi tion-heading)

{succeeded, failed})
task status: bundled(task-id

while driving to location
(position-x, position-y)
State updates will be
broadcast at a fixed
frequency for the duration of
the actibity, and cannot be
queried asynchronously.
No periodic updates will be
requested in the command
for this version.
Task status will be
broadcast upon completion
and cannot be queried.
Vehicle pose will be
contained in this update.
Position-heading is
measured in degrees East of
North
Vehicle will be commanded
to stop immediately.
A position update will be
sent after the vehicle has
stopped.
Currently executing goto
will terminate with a failure
The abort (this command)
will return success.
This command never causes
the vehicle to move --
instead, the vehicle’s
knowledge about its current
position is set absolutely to
the arguments given.
A position update will be
sent with the updated
position.

I ”_ ll^l_ I__ I-Ix”--_̂ _ - -

I _ _ ~ I.- -

of 5 2/6/2003 1 1 4 4 AM

http://claratyfDevelopment/Developmen

http://claraty/Development/DevelopmentTools/vx~~orks-rocky-howto/dl-fl~a~~i . h tm

do-image()
do-spectrometer-read()
do-dig()

broadcast-state-update
returns" (state-name, interval)

_I" - I -- -- _I " - - "

state update:
bundled(ram-s torage,
rover-energ y)

{succeeded, failed})
task status: bundled(task-id,

x^x -~- - -_ -- - -- I_

state updates:
bundled(ram-storage,
rover-energy)

{succeeded, failed})
task status: bundles(task-id,

state updates: rover-energy
task-status: n/a

Position-heading is
measured in degrees East of
North
Memory usage state update
will be broadcast upon
completion, along with a
task-id and the task status.

- " - ~ lll__-_l_ _ll^l_" ~~

No asynchronous queries.
Science activities of
different types (A, B, ...)
will consume different
amounts of time, power, anc
memory. These values will
be set in the FL at startup
(e.g., via initialization file).
Memory usage and power
remaining state update will
be broadcast upon
completion, along with a
task-id and the task status.
No asynchronous queries.
This command can be callec
at any point to get periodic
broadcasts of power
remaining -- this is the only
state that's currently
available via this method.

9 Call with interval == -1 to
turn off power updates.
Currently, interval is
restricted to be no less than

I_ ---- ~ " - - - ~ ~ " I -"~. Ix-xI - - -_II-" 1_1 I

I" ~---"- _. - _".l_l I ~ ~ ~ " " _" 1111

5 (seconds). ~ ~ - - - I- - _.

This command is
used to simulate the

2/6/2003 I 1:44 A M

rime warp-time(num-seconds)

http://claratylDevelopment/DevelopmentT~l~vxworks-rocky-howto/dI-fl-api. htm

state updates:
bundled(ram-storage,
rover-energ y)

bundles(task-id,
{succeeded, failed})

task status:

effect of advancing
time in the DL
Rover-energy is
appropriately drained
according to the
number of seconds
“elapsed” and the
per-second drain
value

~ l”lxll ~~ - I X I __x _I -I

of 5 2/6/2003 11:44AM

CLARAtv Connector

Thread I Thread 2

Command Format - ASCII:
“(cand-name> (args [(<key> <value>)r)
(returns [(<statename> <update-interval>)]*))”

Sockets ~ 0 0 ~ ~ 0 0 0 ~ 0 - 0 0 ~ 0 ~ 0 0 0 ~ ~

Decision Layer I WKS

Functional Layer
- - ~ o ~ ~ o ~ o o o

FIFO

Thread I Thread 2

FIFO

W->Object Mapping

ofa line indicates a mmment

go_to_locahon~open~loop mv
abortcuirmtLgo_to rover
tum-in-place m e r

Active Object -
Runs its own thread

FIFO Queue FL-Message F?
I m

Create Object
(duration of and)

I : I

Persistant Object
(duration of system)

Can write
an EDR

I.A.N. 12/02

