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Decision Layer Capabilities



Decision Layer Summary

Provides intelligent decision-making capabilities

Designed to contain and enable integration of:
— planning/scheduling techniques |
— executive techniques
— other high-level autonomy techniques (e.g. data analysis)

Also intended to provide flexible interface to CLARAty
Functional Layer

Current DL instantiation provided by CLEaR Framework

— CLEaR: Closed Loop Execution and Recovery

— Integrates CASPER dynamic planning system (JPL) with TDL
executive (CMU)



Decision Layer Capabilities

Autonomous rover-command generation to achieve high-
level science and engineering goals
— Given:

Initial state: Rover at position (x,y) w/ certain resource levels
* Desired state: Achieve science activities A,Band C
— Produce: |

* Plan (i.e., list of commands) to make desired state true

E.g., navigate to loc A, raise mast, take image, lower mast, navigate to loc B,
etc.




Decision Layer Capabilities, cont.

» Use of both declarative and procedural domain information

— Activity X uses “20 Watts of Power” and requires “Camera to be on”

— Activity A must be scheduled before Activity B within allowable range
[10 sec, 30 sec]

— Activity Z breaks down into sub-activities Z1, Z2 & 73
— If condition P holds then perform activity Q

« Reasoning about state, resource and temporal constraints
» Timelines represent plan’s effects over time

RESOURCE

STATE

Time



Decision Layer Capabilities, cont.

e Command execution and monitoring
— Dispatch commands to FL and monitor relevent state and resource
information -
« Exception handling
— Handle exéeptions or failures
— E.g., must retry rock grasp due to initial failure
— E.g., motor overheats so disable arm

e Re-planning in light of changing context or goals

— Modify global plan when conditions change

— E.g., discard science target or traverse due to unexpected low power
reserves

— E.g., add science target due to unexpected opportunity



Decision Layer System Overview



CLEaR System Approach

« CLEaR integrates two software components:
— CASPER planning and scheduling system

Initial plan generation

Reasoning about resource, state and temporal constraints
Global knowledge of plan and state/resource timelines
Dynamic re-planning when state or goals changes

Declarative constructs for model information (e.g., activity pre-conditions and
effects)

— TDL executive

Task expansion based on current conditions
Execution monitoring

Task synchronization

Exception handling

Procedural constructs for model information (e.g., conditionals, iterative
behavior)

« CLEaR task examining how planning and executive capabilities can be
closely integrated to provide a more robust and responsive system



CLEaR High-level View
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ASPEN/CASPER System Architecture
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TDL System Architecture
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Decision Layer Model Examples
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Plan
Activity

Resource
timelines

Example ASPEN Plan

imeline unit: [1998-092/15:39:59, 1998-092/18:53:59) sun_angle_sv0 i5 150
imeline unit: {1998-092/06:19:59, 1998-092/08:39:59] sun_angle_sv0 is 30
imeline unit: [1998-082/08:00:20, 1998-092/16:00:00) orbiter0 is 0

imeline unit: [1998-092/08:00:20, 1998-092/16:00:00] orbiter is 0

State
timelines
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Sample ASPEN Activity Definition

Activity go_to_location {
position fromx, fromy, fromz, X, y, z;
angle fromheading, heading;
distance dist; // est. traverse distance
real speed = 1.655; // meters per min
real goto_power = 330.0; // Watts
int goto_energy; / Watt-hours

timeline_dependencies =

<fromx, fromy, fromz, fromheading> <- rover_orientation_sv;
dependencies =

dist <- path_distance(fromx, fromy, x, y, pathplanner),

duration <- traverse_time(dist, speed, duration, ...),

goto_energy <- calculate_rover_energy(goto_power, duration);
reservations =

day_night_sv must_be "day",

rover_energy_sv use goto_energy,

health_sv must_be "nominal”,

rover_orientation_sv change_to <x,y,z,heading> at_end;

%
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Sample ASPEN Resource & State Defs

Resource shovel { type = atomic; };

Resource spectrometer { type = atomic;

%

Resource battery {
type = depletable;
capacity = 69; // watts
min_value = 0;

¥

State_variable rover_orientation_sv {
// X, 'y, z, heading
states = <real, real, real, real>;

default_state = <0.0, 0.0, 0.0, 0.0>;
}

State_variable mast_sv {

states = (""stowed", "deployed");

default_state = "stowed";

|5
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Sample TDL Task Definition

GOAL stepToLocation(TaskData *taskData, double destPosTol, int time_bound)
{

float targetX, targetY, targetZ, targetHeading, priority;

if( (tdIVars[TIME].getCurrentValue() < tiine_bound) &&
(tdIVars[TASK_TEMPORAL_FAILURE].getCurrentValue() ) )
{ .

Spawn turnInPlace(taskData,time_bound) With Wait;

if(!commandMap((int)(td1Vars[ CUR_TRAVERSE_TID].getCurrentValue())].isSucceeded())
{

cout<<"stepToLocation::turnInPlace returned without completion. NOT proceeding with goto\n"<<flush;

}
}

if( (tdIVars[TIME].getCurrentValue() < time_bound) &&
(tdIVars[TASK_TEMPORAL_FAILURE].getCurrentValue() ) )
{

tid = sendNavToCommand(targetX, targetY, targetZ, targetHeading, destPosTol, position_update_frequency);
Spawn monitorStepCompletion(taskData, tid, time_bound) With Wait;
if(lcommandMap(tid].isComplete())

{

Spawn abortCurrentGoTo(taskData) With Wait; //send an all-stop

commandMap|tid].complete(FAILED);
return;

}
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Sample TDL Monitor Definition

MONITOR stepCompletion(TaskData *taskData, int tid, int time_bound)
serial, period 0:0:2.0, maximum trigger 1

{
if(commandMap(tid].isComplete())

{
cout<<"stepCompletion: TRIGGER (task compl)\n"<<flush;
TRIGGER();

}
if(tdlVars TASK_TEMPORAL_FAILURE].getCurrentValue())

{
cout<<"stepCompletion: TRIGGER (temporal failure)\n"<<flush;
TRIGGER();
}
1f(tdlVars[TIME].getCurrentValue() >= time_bound)
{
cout<<"stepCompletion: TRIGGER (time bound = ...\n”<< flush;
TRIGGER();

}



Decision Layer Code Status and
Documentation
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Status of Code

* System requirements

Currently developed using Sparcworks compiler, Solaris 2.6 & 2.8

— Have created working binary for Solaris 2.7 (telerobotics sparcs)

Currently porting code to g++ under Linux

« CLARAty Repository

Have not checked in yet
Holding on paperwork and porting code

* Model information

Have ASPEN and TDL models based on FY01 scenario
s  Work for both R7 & R8 with small parameter changes
o Currently maintain two separate models for ASPEN & TDL
Model(s) primarily reason about traverses, comm and science activities, and power
and memory resources
DL designed to receives updates from FL for:
* Position, memory & energy
+ Currently extending to receive map updates

Model(s) will need to be extended for additional scenarios and/or as new rover
components are added or tested (e.g., arm, mast, comm)

s System source code may require extensions as well (e.g., optimization)
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Documentation

Some documentation exists on CLARAty web page
— http://claraty/Development/DIL%20Documentation/index.html

— Will be extending this to have step-by-step instructions for running FY01
(and future) scenarios in simulation and on rovers

ASPEN/CASPER documentation

— http://www-aig.jpl.nasa.gov/public/planning/aspen/

— http://www-aig.jpl.nasa.gov/public/planning/casper/
— ASPEN User’s Manual can be found at:

 http://www-aig.jpl.nasa.gov/public/planning/aspen/usersguide. pdf

TDL documentation
— http://www-2.cs.cmu.edu/~tdl/

— TDL Quick Reference Manual can be found at:
o http://www-2.cs.cmu.edu/~tdl/tdl .html
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hitp://claraty/Development/Development Tools/vxworks-rocky-howto/dl-fl-api.htm

DRAFT

Decision Layer - Functional Layer Commanding/Update API

In the context of this year's CLARAty and CLEaR demonstrations, this document is an attempt to clarify the interface between TDL and the FL.
code.

It's currently a draft, intended for iteration/feedback from members of the team.

NOTE: Time is not being represented in the FL this year. It is up to components in the DL to maintain their own clock.

Category Commands (DL->FL) Updates (FL->DL) Semantics
vvvvvvvv e state updates:
bundled(ram_storage, ® Resets the global timer and
FOVEr_energy) initializes rover_energy and
Initialization start_rover() ¢ task status: ram_storage
bundles(task_id, ® Returns immediate resource
{succeeded, failed}) and success message
® state update: i ¢ Velocity of all actuators on
bundled(position_x, the vehicle becomes zero.
position_y, position_z, ¢ For now, we're only
Control all_stop() position_heading) stopping the wheels, but this
e task status: bundled(task_id, should eventually include
{succeeded, failed}) mast and arm operations.

¢ Should be issued prior to
go_to_location if path
planning (GESTALT) is not
in use. position_heading

® state update: argument should be the
bundled(position_x, ; heading from current

of 5 2/6/2003 11:44 AM
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Navigation

turn_in_place(position_heading)

http://claraty/Development/DevelopmentTools/vxworks-rocky-howto/dl-fl-api.hitm

position_y, position_z,
position_heading)

task status: bundled(task_id,
{succeeded, failed})

i

i

location to the goal.
Position state update will be
issued upon completion,
along with a task_id and the
task status.
Position_heading is
measured in degrees East of
North

Navigation

go_to_location (position_x,
position_y, position_z(optional),
position_heading(optional))
"returns” (position_update,
interval)

state update:
bundled(position_x,
position_y, position_z,
position_heading)

task status: bundled(task_id, ?

{succeeded, failed})

turn_in_place should be
issued prior to
go_to_location if path
planning (GESTALT) is not
in use.

This command will use the
GESTALT path planner
when it is available.

Servo to location
(position_x, position_y)
State updates will be
broacast at a fixed frequency
for the duration of the
activity, and cannot be
queried asynchronously.

No periodic updates will be
requested in the command .
for this version.

Task status will be

broadcast upon completion |
and cannot be queried. !
Vehicle pose will be
contained in this update.
Position_heading is
measured in degrees East of
North

Uses GESTALT navigation
algorithm to avoid obstacles

2/6/2003 11:44 AM
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while driving to location
(position_x, position_y)
¢ State updates will be
broadcast at a fixed
frequency for the duration of
navigate_to_location(position_x, e state update: the actibity, and cannot be
position_y, position_z(optional), bundled(position_x, queried asynchronously.
Navigation pOs%t%on_heading(optional), pos?t?on_y, pqsition_z, e No periodi.c updates will be
position_tolerance) position_heading) requested in the command
“returns” (position_update, . * task status: bundled(task_id, for this version.
interval) {succeeded, failed}) e Task status will be
broadcast upon completion
and cannot be queried.
Vehicle pose will be
contained in this update.
¢ Position_heading is
measured in degrees East of
North
® Vehicle will be commanded
e state update: to stol? .immediately..
bundled(position_x, ¢ A position update? will be
o o sent after the vehicle has
Navigation abort_current_go_to() pos?t%on_y, pqsﬂmn_z, stopped.
position_heading) o C 1 " ¢
o task status: bundled(task_id, urrently exccuting goto
{succeeded, failed}) | will termmate} with a failure.
| @ The abort (this command)
- will return success.
| ® This.command never causes
the vehicle to move --
instead, the vehicle's
e state update: knowledge about its current
set_current_pose(position_x, bun‘dlled(positiqn‘_x, ' * position is set a}?solutely to
Navigation position_y, position_z(optional), pos@on_y, position_z, f. the arguments given.
position_heading) position_heading) e A position update will be
e task status: bundled(task_id, sent with the updated
{succeeded, failed}) position.
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¢ Position_heading is
measured in degrees East of

e state update: * Memory usage state update
bundled(ram_storage, will be broadcast upon
Downlink transfer_data() rover_energy) completion, along with a
e task status: bundled(task_id, task_id and the task status.
{succeeded, failed}) ¢ No asynchronous queries.

e Science activities of
different types (A, B, ...)

j will consume different

amounts of time, power, and

¢ state updates: Co memory. These values will
¢ do_image() bundled(ram_storage, be set in the FL at startup

Science ¢ do_spectrometer_read() rover_energy) ' (e.g., via initialization file).
* do_dig() ¢ task status: bundles(task_id, e Memory usage and power

{succeeded, failed}) remaining state update will

be broadcast upon
' completion, along with a
task_id and the task status.
¢ No asynchronous queries.

| This command can be calléd
at any point to get periodic
broadcasts of power
remaining -- this is the only
state that's currently
available via this method.

| * Call with interval == -1 to

| turn off power updates.

| @ Currently, interval is
restricted to be no less than

5 (seconds). |

broadcast_state_update * state updates: rover_energy 4

State U; i
pdates "returns" (state_name, interval) * task_status: n/a

| o This command is
| used to simulate the

tof5 2/6/2003 11:44 AM
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Time

warp_time(num_seconds)

http://claraty/Development/DevelopmentTools/vxworks-rocky-howto/dl-fl-api.htm

* state updates:
bundled(ram_storage,
rover_energy)

s task status:
bundles(task_id,
{succeeded, failed})

effect of advancing
time in the DL
Rover_energy is
appropriately drained
according to the
number of seconds
"elapsed” and the
per-second drain
value

+

2/6/2003 11:44 AM



CLARAty Connector

Thread 1

Listener

Decision Layer | WITS

Functional Layer

Thread 1

Id:4 -pos_x:10 pos y:3

Id:5 status: success

Omd->Object Mapping

# command-object-mappings —
See 'users -guide.html' in this
directory for

# documentation. A ‘# at the sta
of aline indicates a comment.
all_stop : rover

go_to_location : rover
go_to_location_open_loop : rove]
abort_current_go_to : rover
turn_in_place: rover

Thread 2

Talker

[FLCnd |

\ 4

Command Format - ASCII:

“(<emd-name> (args [(<key> <value>)]*)
(returns [(<state-name> <update-interval>)]*))"

Listener

—————————— — = Sockets

—>

Assign Unique ID

Thread 2

Thread 3

!

Execution Engine

FIFO

eue

Gotoloc (x=10.0,:y=0.0)

ReadSpectrometer

Thread 4...n

Active Object —
Runs its own thread

FIFO Queue

FL_Message

/

N

FL_Cmd

FL_Update

Or

Execute Cmd

| L—TANTA-A- R A an - s nEA~ )

'}_

Spawn Thread/Cmd

[ =T UOUTO T OTT IO

—  Create Object

(duration of cmd)

L Persistant Object
(duration of system)

Can write
an EDR
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