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Abstract 
This paper introduces a new approach to the development 
of equivalent models. Models of various accuracy and 
simulation speed m y  be needed in diflerent contexts of 
design and analysis, or within different simulators. The 
models may be of similar or different nature, and could be 
for example structural or behavioral. Traditional model 
development and tuning is manual, and proceeds by 
finding one of the models, which is then used to derive 
equivalent model(s), e.g. a simpler behavioral model. It is 
not guarantied that this simpler equivalent model is 
consistent with the thing it models in the first place 
(although it may be an approximation of the more 
complex model). This paper offers a means to automate 
modeling and derive the two or more equivalent models 
simultaneously and consistent with each other. The 
approach presented here relies on search algorithms to 
automatically explore the space of possible solutions in 
different model search spaces, alternating the evaluation 
of models of different type and resulting in models that 
have consistent behavior. This mixed-model search 
(MMS) approach is demonstrated with an example in 
which an evolutionary algorithm used as the search 
method automatically determines consistent equivalent 
models for a problem in which a software model and a 
hardware model would be otherwise inconsistent. 
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1. Introduction 

The purpose of this paper is to introduce a new 
approach to the development of consistent equivalent 
models that may be used to characterize a system in 

various contexts, such as within different simulators. 
These consistent equivalent models are referred in the 
following as forming a model family, whose individual 
members could be each of different nature, or, of same 
nature, i.e. of same structurdtopology with differences for 
example in the levels of resolution or accuracy of their 
descriptive power. The choice of model determines the 
speed with which the simulation and search can occur and 
whether the simulation can converge to a solution within 
a practical time frame. These models differ in the 
modeling detail (e.g. modeling the switches with back-to 
back transistors or with resistors, faster to simulate yet 
less accurate). There is often a tradeoff between speed of 
simulatiodconvergence and model accuracy. 

In this paper we take as example the case of 
development of electronic circuit models. One should 
make the remark here that the problem of automatic 
model determination is analogous to the problem of 
automated circuit design or synthesis problem. In both 
cases one starts from some desired behavior and one 
seeks means to reproduce it. A variety of models, such as 
macro models and behavioral models, are used in 
electronics. The examples that will be used for illustration 
in this paper refer to models of circuits that will be 
mapped on configurable devices, and for which the 
reference will be to software models of various resolution, 
as well as a hardware model - which is a programmed 
configuration on a reconfigurable device. 

In creating and tuning an alternative (often simplified) 
model the responses of candidate models are compared to 
a reference, which may be the actual system to be 
modeled or a trusted model of the system. For example a 
SPICE model is first created. Then a model order 
reduction (MOR) takes place by a technique such as 
PRIMA [ 11 and MMM [2]. These MOR approaches serve 
two functions: 1) reduce the circuit size so that efficient 
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time-domain analysis can be performed; 2) accurately 
extract frequency-domain characteristics by identifying 
dominant pole information. Speeds-up could be 
significant; for example MMM on a 19177 nodes circuit 
took 10-25 seconds while SPICE couldn't finish the 
circuit, one quarter of the circuit taking 6 days on SPICE 
r.21. 

It is essential that the simplified models are 
consistent with the models that generate them and with 
the system to be modeled. Usually one finds a first model 
that matches the real world and then one derives a 
simplified model which approximates the first. This 
simplifications are usually through repetitive manual trials 
and iterations and may result in simplified models that are 
approximations of the first model but not necessarily 
consistent with the system to be modeled. The technique 
proposed here automates this process and also results in 
consistently equivalent models. It performs a 
simultaneous search for models of the mode family. In 
our case target data is the considered obtained from and 
equivalent to the "real" system. 

The paper is structured as follows: Section 2 details 
the proposed mixed-mode search. Section 3 demonstrates 
the technique applied to the automatic determination of 
circuit models (an automated circuit synthesis problem) in 
which evolutionary algorithms perform the search, and 
which illustrates how consistent models can be obtained 
while without applying the technique this was not the 
case. 

assigned to a different resolution level model at each 
iteration of the simulation. 

One example of how high and low resolution models 
can differ is in the modeling of the switches S1, S2, S3, 
etc., of the configurable circuit of a programmable chip 
(e.g. Figure 1) [5 ] .  In a low-resolution model, each 
switch can be modeled as a simple ON/OFF device 
having a very low resistance (e.g., 1 Ohm) in the ON state 
and a very high resistance (e.g., 1 Giga Ohm) in the OFF 
state. In a high resolution model, each switch is modeled 
as it is actually implemented, namely as a pair of parallel 
complementary MOSFETS using, for example, standard 
SPICE models for the PMOS and NMOS FET's. This 
latter model is more complex but exhibits a simulated 
behavior that more closely resembles the behavior of the 
actual switch. 

57 

s3 

s11 

2. Mixed-model search 

In the following the reference will be to models of 
circuits, however the methodology is general for any lund 
of model. The automated scheme discussed here is that of 
design (modeling) by simulation, in which various 
candidate designs (models) are simulated during an 
automated search process. The proposed method of 
obtaining consistent models uses a heterogeneous mix of 
models of various types, e.g. of both high and low levels 
of resolution. In one embodiment, every candidate 
solution is modeled with many or all models 
corresponding to many or all possible levels of 
resolutions, and for each candidate circuit (model family), 
the fitness functions of the various models of that circuit 
are combined in evaluating the candidate circuit. In 
another embodiment, each candidate circuit is first 
modeled with a single model, different candidates being 
assigned models of different resolution levels; with each 
iteration of the simulation, each candidate circuit is 
assigned a different resolution level model, so that after a 
number of iterations, each candidate circuit has been 
modeled with all levels of resolution - alternatively, the 
reassignment to different resolution level models is 
performed randomly so that not all candidate circuits are 
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Figure 1: Reconfigurable circuit with 24 switches (See 
[5] for details). 

A set of candidate circuits C1 through CN 
(representing, for example, different configurations of the 
reconfigurable circuit of Figure 1) is defined by a set of 
"chromosomes" that are fed to a high-resolution model to 
produce N high-resolution models M1 through MN. A 
simulator simulates the physical behavior of each of the 
models MI through MN in response to a predetermined 
stimulus. The responses of each model are compared to a 
desired response and a fitness function is produced for 
each model, namely the fitness functions F1 through FN. 
A standard search process determines the next search 
points based on this information. 

In the proposed MMS each one of the candidate 
circuit C1 through CN is modeled by both a high- 
resolution model and by one (or more) low-resolution 
models. Thus, for the N candidate circuits C1 through 
CN, there are N pairs of models M1, ml  through MN, 
mn. There are N high-resolution models M and N low- 
resolution models m. The pair of highnow resolution 
models (e.g., M2 and m2) (family model) representing a 
particular candidate circuit (e.g., C2) produces a pair of 
fitness functions (e.g., F2 and f2). A combiner combines 



each pair of fitness functions to produce a combined score 
for the corresponding candidate circuit. For example, the 
combiner may compute the average of the two fitness 
functions as the combined fitness function or score. The 
combined score for each candidate circuit is provided to a 
search process that controls the simulator. The average 
may be a weighted average in which, for example, the 
fitness function of a higher resolution model is given 
more (or less) weight than that of a lower resolution 
model. Alternatively, the average may be unweighted. 

A computational savings rflay be realized by 
employing only one model for each candidate circuit 
during any single iteration of the evolution process. With 
each iteration of the evolution process, a different 
resolution level model is assigned to each (or at least 
many) of the candidate circuits. As a result, after a 
number of iterations, each candidate circuit has been 
modeled with all levels of resolution. Such assignments 
may be carried out in a random fashion. For example a 
model could be considered for each candidate circuit, 
different candidate circuits being modeled with a model 
of a different resolution level. The first two candidate 
circuits C1 and C2 could be modeled with a high- 
resolution model (M 1, M2 respectively) while the third 
candidate circuit C3 is modeled with a low-resolution 
model (m3). The simulator produces data that would lead 
to a fitness function from each model (FI, F2, f3, etc.) 
which is provided to the search decision mechanism. 

The assignment of a particular candidate circuit to a 
model of a particular resolution level preferably, but not 
necessarily, is performed randomly so that the different 
resolution levels are distributed among all candidate 
circuit. Likewise, the transition at the end of each 
iteration of various candidate circuits to models of 
different resolution levels preferably, but not necessarily, 
is carried out in a random manner. Such random 
processes may be carried out in accordance with 
instructions furnished to the evolution process. 

3. Mixtrinsic evolution experiments 

3.1. Evolvable hardware 

Evolvable hardware (EHW) refers to automated 
synthesidoptimization of HW (e.g. electronic’ circuits) 
using evolutionary algorithms. Extrinsic EHW refers to 
evolution using software (SW) simulations of HW 
models, while intrinsic EHW, refers to evolution with HW 
in the loop, evaluating directly the behaviorhesponse of 
HW. For several reasons (including mismatches between 
models and physical HW, limitations of the simulator and 
testing system, etc.) circuits evolved in SW may not 
perform the same way when implemented in HW, and 
vice-versa circuits evolved in HW may not produce the 
desired response when simulated. This portability 

problem limits the applicability of SW evolved solutions, 
and on the other hand prevents the analysis (in SW) of 
solutions evolved in HW. Mixtrinsic EHW (MEHW) that 
we have introduced is a third approach to EHW and a 
particular case of MMS. In MEHW evolution takes place 
with hybrid populations in which some individuals are 
evaluated intrinsically and some extrinsically, within the 
same generation or in consecutive ones. A set of 
experiments using Field Programmable Transistor Array 
(FF’TA) architecture is presented to illustrate the 
portability problem, and to demonstrate the efficiency of 
mixtrinsic EHW in solving this problem 

In extrinsic evolution (EEHW), schematically 
illustrated in Figure 2, the candidate solutions are 
evaluated as SW models (of HW) and evaluations are 
done using a simulator. The population is homogeneous, 
and consists of SW models (e.g. SPICE netlists) that 
describe an electronic circuit to a certain degree of 
accuracy. In intrinsic evolution (IEHW), the candidate 
solutions are in the form of physical HW configurations 
on programmable devicedarchitectures, which are 
evaluated using some tesdevaluation equipment; IEHW is 
illustrated in Figure 3. 
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Figure 2 Extrinsic EHW: evaluations of software 
so 1 uti o n s 

t 
Population of candidate solutions 

Figure 3 Intrinsic EHW: evaluations of hardware 
solutions. 

3.2. Illustrating the portability problem in EHW 

Early experiments in EHW made apparent that the 
solutions obtained by evolutionary design might suffer a 
portability problem. For example, it was observed that 
some circuits obtained through evolutionary design on 
one HW platform had a different behavior when tested on 
a second platform, although the two were of similar 
typelconstruction. Thus, a circuit evolved on a corner of 



an FPGA did not reproduce the same behavior when it 
was implemented on a different part of the same FPGA 
[3]. Another situation is related to porting to HW a circuit 
evolved in SW (or vice-versa validating in SW a solution 
evolved in HW) as reported in [4]. Some of the circuits 
resulting as solutions from extrinsic evolution do not 
produce the same correct response when 
implementedported into HW. Vice-versa, many the 
circuit topologies resulting from intrinsic evolution do not 
produce a good response (as obtained in the real HW) 
when they are simulated in SW. 

In these examples the target data is the considered 
obtained from the “real” system. In the first case the 
software model is determined and it approximates well 
the behavior of the system. The hardware model mapped 
from it does not behave consistently with software model, 
not fitting the data. A similar situation is if a hardware 
model is obtained first and the software model obtained 
from it (by the same circuit, yet with different physical 
properties). 

33. Results of mixtrinsic evolution 

Mixtrinsic evolution relates to applying MMS by 
evolving on mixedheterogeneous populations, composed 
partly of models and partly of real HW [4]. This would 
constrain evolution to a solution that jointly simulates 
well in SW, and performs well in HW, i.e. a solution that 
exploits only the HW characteristics included in the SW 
model for producing the desired behavior (see Figure 4). 
Solutions based on HW properties outside the SW model 
are eliminated by evolution. In ME the population of 
candidate solutions is robust, more likely to be in 
agreement with common design rules, and, if novel, more 
likely to be patentable (i.e. to have generality and not 
depend on a fabrication process). The greatest advantage 
of the resulting solution is that can both operate in HW 
and can be analyzed in SW to explore its behavior outside 
the domain within which it was evolved - this is the only 
way to have insights and confidence in the evolved HW 
solution. Also, the resulting circuit is more likely to be 
portable to other HW platforms. 
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Figure 4. Mixtrinsic EHW: evaluations of mixed 
populations comprised of both hardware and software. 

Two types of ME are further detailed: complementary and 
combined ME. In complementary M E W ,  candidate 

solutions are evaluated after being alternatively 
reassigned to either a HW or a SW platform (subject to 
random or deterministic choice). For example, an 
individual in a generation would have probability P to be 
evaluated in HW and probability 1-P to be evaluated in 
SW. Assuming HW evaluates faster than SW one can 
speed-up evaluations by having a high value of P, which 
will cause a larger population to be evaluated in HW. The 
probability P, and related to it the ratio of individuals 
evaluated in HW over the total population, could also be 
variable parameters, adjustable during evolution. 

In what we refer here as combined M E W ,  each 
individual is evaluated both in HW and SW, and a 
combined fitness function is calculated. In the simplest 
case this can be a simple average of the two components 
or may involve adjustable weights etc. 

We refer to the above description as a matching ME, 
for which the emphasis was on reinforcing the matching 
of similar characteristics of the SW models and the HW it 
describes. An opposite idea would be reinforce 
dissimilarities and reinforce HW (or SW) distinctive 
characteristics, i.e. mismatches, and we will refer to this 
as mismatching MEHW. This paper gives an example of 
MEHW using a Field Programmable Transistor Array 
(FPTA) as evolutionary testbed. 

The FPTA was proposed as a flexible, versatile 
platform for EHW experiments. The cell is largely a “sea 
of transistors” interconnected by other transistors that act 
as signal passing devices (gray-level switches). Details of 
the FPTA, its HW implementation and evolutionary 
experiments on FPTA can be found in [5].  The FPTA was 
exercised on a testbed that supports HW and SW 
evaluations (intrinsic/extrinsic). The SW subsystem 
makes use of the Caltech 256-processor HP Exemplar 
parallel computer to run multiple copies of SPICE. The 
HW subsystem is built around National Instruments 
LabView, associated data acquisition boards, signal 
generators, and other equipment, see [6] for more details. 

The following exemplifies the portability problem and 
demonstrates the ME’S ability to solve this problem. The 
following experiments are shown: a) Extrinsic evolution, 
with the resulting solution valid in SW but invalid when 
tested in HW, b) Intrinsic evolution, with the resulting 
solution valid in HW but invalid when tested in SW, c) 
Mixtrinsic evolution, with the resulting solution valid 
both in SW and HW. 

The experiments show evolutionary synthesis of an 
AND gate and use one FPTA cell. The input signals 
follow all input combinations of logic levels Is and Os. 
The level ‘high’ input signals corresponding to logical 
‘1’ were controlled to keep their level for 5 ms, which 
corresponds to 20 samples on LabView graphs of 
acquired signal from HW. All experiments (about 20 runs 
for each case in a) and b) and 5 each for c l )  and c2) 
below) used 30 individuals for 30 generations. 



a) Two best individuals in the last generation are the 
solutions presented here for discussion. One of the 
solutions could be validated in HW. However, the circuit 
shown in Figure 5 ,  which is in fact the solution with the 
highest fitness, does not give satisfactory response when 
downloaded into HW. Thus, two direct observations can 
be made: a) one solution is validated in HW while the 
other is not, b) in this particular case, the “better *‘ (in the 
sense of the fitness function that rewarded for higher 
value of the ‘1’ level) solution in SW performs worse in 
HW. It appears that the solutions obtained through 
extrinsic evolution may not work in HW. Moreover, in 
many cases, there is no way to know for sure if it works 
without validating in actual HW.* (* We believe this 
reflects the current state-of-the-art, but admittedly we are 
strongly biased by our own experience with a certain 
model and HW. We believe that increasingly higher 
confidence in a solution would come from minimizing the 
negative effects of the factors discussed in Section 3. We 
also refer mainly to effects in analog circuits, and 

especially to those NOT relying on well understood 
building blocks, such as Op. Amps etc). 

b) Intrinsic evolution. A circuit obtained intrinsically 
(best individual after a 30 individuals for 30 generations 
run) and its response in HW and SW are shown in Figure 
6. The conclusion is that the solutions obtained through 
intrinsic evolution may not work in SW. 

c 1) Combined Mixtrinsic Evolution (Matching). Each 
individual was evaluated both in HW and SW. The 
combined fitness was a simple average. The SW and HW 
responses are similar. The resulting solution is shown in 
Figure 7. 

c2) Complementary Mixtrinsic Evolution (Matching). 
Each individual was allocated either to HW and SW 
evaluation with a 50% probability. The response of the 
resulting solution is identical to that illustrated in Figure 7 
(although the circuit is slightly different) and is omitted 
for space reasons. 

Figure 5. Extrinsically evolved circuit, its response in SW (middle) and invalid response in HW (right). 

Figure 6. Intrinsically evolved circuit, its response in HW (right) and its invalid response in SW (middle). 



Figure 7. Circuit obtained by mixtrinsic evolution, its valid responses in SW and in HW 

In all experiments the best 6 individuals of the last 
generation were tested both in HW and SW and displayed 
similar response. Although this is only e- 
e e e ,  there is a good reason to believe that selection 
pressure would indeed favor solutions that display similar 
response in HW and SW. 

d) Divergent ME: exploiting the distinctive 
characteristics of HW (or SW): Once accounted with the 
likelihood of obtaining mismatched responses between 
HW and SW, it appears straightforward to accept that 
selection pressure can force things in this direction (of 
mismatches). We are currently performing experiments in 
which we use combined evolution (each individual is 
evaluated twice, once in HW and once in SW). The 
combined fitness hnctions are either rations of fitness of 
HW over fitness of SW, or derivations of it such as sum 
of HW fitness and inverse of SW fitness. Preliminary 
experiments illustrate that indeed resulting circuits 
produce the expected result in HW, while not being able 
to give a good response in SW. 

4. Conclusion 

The mixed-model search was introduced as a general 
method to obtain consistent equivalent models The search 
seeks simultaneously with model families, including 
models of different resolution or type. In the context of 
evolutionary design and evolvable hardware the technique 
is particularized as mixtrinsic evolution and uses 
heterogeneous populations of individuals some of which 
are evaluated extrinsic and some intrinsic. Used to 
alleviate the portability problem, convergent mixtrinsic 
evolution reinforces similarities between SW and HW 
behavior. 
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