
2003 AAAI Spring Symposium on Computational Synthesis held March 24-26,2003 at Stanford University in Palo Alto,
. California.

Scalability Issues in Evolutionary Synthesis of Electronic Circuits:
Lessons Learned and Challenges Ahead

Adrian Stoica
Didier Keymeulen

Ricardo S. Zebulum
M. I. Ferguson

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, CA 9 1 109
ad r i a 11. stoic a ((4 i P I . 11 a sa. go\!

Xin Guo
Chromatech, Alameda CA 94501

Abstract

This paper describes scalability issues of Evolutionary-
driven automatic synthesis of electronic circuits. The article
begins by reviewing the concepts of circuit evolution and
discussing the limitations of this technique when trying to
achieve more complex systems. The paper continues by
describing techniques developed by the authors to partially
overcome the limitations of evolution, such as the use of
domain knowledge, design re-use and the development of
hardware accelerators, such as stand-alone board-level
evolvable system (SABLES), which was built to speed up
the evolutionary design of electronic circuits. We also
propose new directions of research that address scalability,
such as: 1) evolutionary compilation of descriptions from
behavioral Hardware Description languages (HDL) to
structural HDL (for both the case of digital and
analogmixed signal) 2) evolutionary synthesis, converting
from synthesizable analog HDL to circuits and 3)
hardware-software partitioning (co-design) for CPUFPGA
hybrids.

1. Introduction

Evolution-driven automatic synthesis of electronic
circuits has been demonstrated for simple circuits, yet its
efficiency in obtaining complex electronic circuits
operating under real-world conditions is still to be proven.
Complex circuits are often associated with large circuits.
Even a simply formulated requirement on which a circuit
can easily be evaluated (e.g. a 12 bit analog to digital
converter) may require a complex circuit solution.
Complexity may also be in the requirements (often hard to
formally specify, and which can translate in complicated
evaluation tests for each individual) even if the resulting
solution circuit is quite simple/compact. In certain cases it

Copyright 0 2003, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

may be useful to observe the distinction between the two
aspects of complexity and treat them differently.

Evolutionary synthesis has been mainly a bottom-up
approach. The components used in most demonstrations of
evolutionary circuit synthesis were primitive elements, for
example device-level (transistor, capacitor, resistor) for
analog circuits, or gate level for digital circuits. For any
complex system the number of components used may be
relatively large, leading to many ways of interconnecting
them, and consequently to a very large and irregular search
space.

In addition to the challenge of sampling a large search
space, there is also the problem that evaluations in
simulations may take long, and what is worse, scale badly
with increasing complexity of the design. For example, in
automated analog circuit design it is known that the SPICE
analysis/simulation scales badly with the number of nodes
of the circuit. Thus it appears natural to try to reduce the
number of evaluations and to speed-up
simulations/evaluations.

This paper is organized as follows. Section 2 reviews the
concepts of evolution-driven automatic circuit synthesis.
Section 3 describes techniques to address the scalability
problem, including the use of domain knowledge, building
block encapsulation, Mixed Model Search and the
development of a hardware accelerator in the form of a
stand-alone board-level evolvable system (SABLES).
Section 4 proposes new techniques to address this problem,
such as using structural descriptions when evolving from
higher level specifications. Section 5 concludes the paper.

2. The Evolutionary Search .

The evolutionary/genetic search is tightly coupled with
a coded representation that associates each circuit to a
"genetic code" or chromosome. The simplest representation
of a chromosome is a binary string, a succession of Os and
Is that encode a circuit. The status of the switches (ON or
OFF) determines a circuit topology and consequently a

specific response. Thus, the topology can be considered as
a function of switch states, and can be represented by a
binary sequence, such as “101 I ...”, where a ‘ I ’ is
associated to a switch turned ON and a ‘0’ to a switch
turned OFF.

First, a population of chromosomes is randomly
generated. The chromosomes are converted into circuit
models for evaluation in SW (extrinsic evolution) or into
control bitstrings downloaded to programmable hardware
(intrinsic evolution). Circuit responses are compared
against specifications, and individuals are ranked based on
how close they come to satisfying them. In preparation for a
new iteration, a new population of individuals is generated
from the pool of best individuals in the previous generation.
This is subject to a probabilistic selection of individuals
from a best individuals pool, followed by two operations:
random swapping of parts of their chromosomes, the
crossover operation, and random flipping of chromosome
bits, the mutation operation. The process is repeated for
several generations, resulting in increasingly better
individuals. Randomness helps to avoid getting trapped in
local optima. Monotonic convergence (in a loose Pareto
sense) can be forced by unaltered transference to the next
generation of the best individual from the previous
generation. There is no theoretical guarantee that the global
optimum will be reached in a useful amount of time;
however, the evolutionarylgenetic search is considered by
many to be the best choice for very large, highly unknown
search spaces. The search process is usually stopped after a
number of generations, or when closeness to the target
response has reached a sufficient degree. One or several
solutions may be found among the individuals of the last
generation.

3. Techniques for Scalability

3.1 Use of Domain Knowledge

One possible way to reduce the search space (possibly
eliminating large regions of the search space) is through the
use of domain-knowledge. The incorporation of domain-
knowledge is sometimes implicit in the choice of
representations, restriction or bias of possible
configurations. For example, in one experiment it was
difficult to use evolved logic gate circuits as building
blocks for more complex designs, because the evolved gate
was not able to drive similar gates. This was addressed by
restricting inputs only to connect to transistor gates and not
to drain, source or substrate; as a consequence higher input
impedance solutions and better loading characteristics were
implicitly obtained, and the building-block became
reusable.

In the current state of our research this technique was
only applied to enforce that evolved building blocks could
be cascaded to build complex circuits. However, it is not
yet proven that the enforcement of human design guidelines
might aid the Evolutionary Algorithm to synthesize
complex circuits only from primitive components, i.e.,
without cascading simple evolved circuit building blocks.

Evolutionary Algorithms can also rediscover classic
human designs, as shown in Koza et al. (1 999). They have
more chances to infringe on existing patented circuits if the
representation is constrained by allowing only usual
connections among components. This is usually the case of
developmental approaches, in which user guidelines to
build the circuit from the chromosome are used.

3.2 Building Block Encapsulation

It appears natural to say that the search space can be
reduced if one keeps an acceptable scopelfocus, increasing
level of abstraction e.g. through the use of increasingly
higher level building blocks. The method proposed is based
upon encapsulation and design re-use and one example is
the evolution of a 4-bit Digital to Analog Converter (DAC).
It has been observed that evolution had difficulty in solving
this task using low-level components (such as transistors,
resistors and capacitors) as building blocks. For instance,
the literature reported that a total of 45,000,000 circuits had
to be evaluated to achieve the solution for the 3-bit DAC
problem using Genetic Programming (Bennett et al. 1999).
The objective of our experiment was therefore to overcome
this limitation and synthesize a 4-bit DAC hierarchically.
At first, a 2-bit DAC was evolved from scratch, e.g., using
only MOS transistors as components for evolution. This
circuit was then employed as a building block for evolution
to synthesize a 3-bit DAC, which was subsequently used as
building block for the synthesis of a 4-bit DAC. Figure 1
depicts the evolved circuit schematic and Figure 2 shows its
response. In this particular experiment, the design re-use
was not only limited to previously evolved DAC circuits
(building blocks), but also employed other well-known
building blocks, such as current mirrors.

The experiment took less than one minute in a SPARC
Ultra 2 Sun workstation evaluating about 200,000
individuals. The dramatic reduction in time compared to
other experiments is due to the fact that the DC operating
point of encapsulated building blocks had already been
defined, and their behavior was simulated using a high-
level description language. For further details on the
experiment refer to Zebulum, Stoica and Keymeulen
(2001).

Et - 01

e1 -
83-

lout
h h e d

3bl DAC

P

L

el ,e2 e3.M = Digtal Inputs
le4 = Complemented e4
lout = Current o@ut

Figure 1: Hierarchically evolved 4-bit DAC.

MN. A simulator simulates the physical behavior of each of
the models M 1 through MN in response to a predetermined
stimulus. The responses of each model are compared to a
desired response and a fitness function is produced for each
model, namely the fitness functions F1 through FN. A
standard search process determines the next search points
based on this information.

In the proposed Mixed Model Search each one of the
candidate circuit C 1 through CN is modeled by both a high-
resolution model and by one (or more) low-resolution
models. Thus, for the N candidate circuits C1 through CN,
there are N pairs of models M1, ml through MN, mn.
There are N high-resolution models M and N low-
resolution models m. The pair of highhow resolution
models (e.g., M2 and m2) (family model) representing a
particular candidate circuit (e.g., C2) produces a pair of
fitness functions (e.g., F2 and E). A combiner combines
each pair of fitness functions to produce a combined score
for the corresponding candidate circuit. For example, the
combiner may compute the average of the two fitness
functions as the combined fitness function or score. The
combined score for each candidate circuit is provided to a
search process that controls the simulator. The average
may be a weighted average in which, for example, the
fitness function of a higher resolution model is given more
(or less) weight than that of a lower resolution model.
Alternatively, the average may be unweighted.

A computational savings may be realized by employing
only one model for each candidate circuit during any single
iteration of the evolution process. With each iteration of the
evolution process, a different resolution level model is

17.5

15

12.5

T
E 10
;r

f 7.5
0

5

2.5

0

1;-.
\

0 0.004 0.008 0.012 0.016 0.02 0.024 0.028 0.032 0.036 0.04
Time (s)

Figure 2 - Response of the of the circuit shown in Figure 1.

Building block encapsulation is a promising path to the
evolutionary synthesis of complex circuits. In the context of
the experiment described in this section, however, more
investigation is needed to refine the representation.
Although it seems natural to employ simpler DACs to
evolve higher resolution ones, the circuit size gets very
large comparing to classic human design. Even though it is
straightforward to evolve a n-bit DAC using (n-1)-bit DACs
as building blocks (leading to large circuits), it is still a
difficult task for evolution to synthesize a n-bit DAC using
(n-2)-bit DACs or simpler building blocks.

Instead of using evolution as a tool for automatic
composition of useful modules, these building blocks can
also be selected using domain knowledge. One example is
the use of Operational Amplifiers (OpAmps) in the
evolution of analog circuits. OpAmps are standard building
blocks for analog processing systems, being therefore
natural candidates for the evolution of a regular analog
design. The use of OpAmps as higher level building blocks
enabled the hardware evolution of filters and signal
separators, as discussed in section 3.4.

3.3 Mixed Model Search

Increasing the level of abstraction by using simpler models
also speeds up simulations. Once a building block has been
“encapsulated”, one can for example replace back-to-back
transistors that form a switch with resistors, leading to
circuits that simulate faster. From this point of view
developing coherent equivalent models may be an efficient
approach. Building coherent equivalent models of various
levels of abstraction is made possible using the JPL-
introduced concept of mixtrinsic evolution (Stoica,
Zebulum and Keymeulen 2000). In mixtrinsic evolution
models of various nature, or models of same nature but of
different levels of resolution are used part of the search
population.

A set of candidate circuits C1 through CN is defined by
a set of “chromosomes” that are fed to a high-resolution
model to produce N high-resolution models M1 through

assigned to each (or at least many) of the candidate circuits.
As a result, after a number of iterations, each candidate
circuit has been modeled with all levels of resolution. Such
assignments may be carried out in a random fashion. For
example a model could be considered for each candidate
circuit, different candidate circuits being modeled with a
model of a different resolution level. The first two
candidate circuits C1 and C2 could be modeled with a high-
resolution model (Ml, M2 respectively) while the third
candidate circuit C3 is modeled with a low-resolution
model (m3). The simulator produces data that would lead
to a fitness function from each model (Fl, F2, f3, etc.)
which is provided to the search decision mechanism.

3.4 SABLES

As previously stated, one drawback of sampling large
spaces for circuit evolution is the simulation time when the
circuits are evaluated in SW (extrinsic evolution). An
altemative way to speed up evaluation is the w e of
reconfigurable devices, possibly as emulators, accelerating
the evaluation. A stand alone board level Evolvable System
(SABLES), developed for autonomous portable
experiments integrates a Field Programmable Transistor
Array (FPTA-2) and a DSP implementing the Evolutionary
Platform (EP). The system is connected to the PC only for
the purpose of receiving specifications and communicating
back the results of evolution for analysis.

JPL has developed the concept and has experimented
with a new generation of reconfigurable devices, called
Field Programmable Transistor Arrays (FPTA) (Stoica et al.
200 1). The lack of evolution-oriented devices, in particular
for analog, has been an important stumbling block for
researchers attempting evolution in intrinsic mode (with
evaluation directly in hardware). The FPTA has transistor
level reconfigurability, supports any arrangement of
programming bits without danger of damage to the chip (as
is the case with some commercial devices). Three
generations of FPTA chips have been built and used in
evolutionary experiments. The latest chip, FPTA-2, consists
of an 8x8 array of reconfigurable cells. Each cell has a
transistor array as well as a set of other programmable
resources, including programmable resistors and static
capacitors. The FPTA-2 cell consists of I4 transistors
connected through 44 switches and it is able to map
different building blocks for analog processing, such as two
and three stages OpAmps, logarithmic photo-detectors, or
Gaussian computational circuits. Figure 3 shows the details
of the FPTA cell for the first and for the latest version of
the FPTA chip.

The evolutionary algorithm was implemented in a DSP
that directly controlled the FPTA, together forming a board-
level evolvable system with fast internal communication
ensured by a 32-bit bus operating at 7.5MHz. Details of the
EP were presented in (Ferguson et al. 2002). Over four
orders of magnitude speed-up of evolution was obtained on
the FPTA chip compared to SPICE simulations on a
Pentium processor (this performance figure was obtained
for a circuit with approximately 100 transistors; the speed-
up advantage increases with the size of the circuit). The

s3

S I 1

szo

evaluation time depends on the tests performed on the
circuit. Many of the evaluation tests performed required
less than two milliseconds per individual, which for
example on a population of 100 individuals running for 200
generations required only 20 seconds. The bottleneck is
now related to the complexity of the circuit and its intrinsic
response time. SABLES fits in a box 8” x 8” x 3”.

The following experiment illustrates an evolution on
SABLES (Stoica et al. 2002). The objective of this
experiment is to synthesize a half-wave rectifier circuit. The
testing of candidate circuits is made for an excitation input
of 2kHz sine wave of amplitude 2V. A computed rectified
waveform of this signal is considered as the target. The
fitness function rewards those individuals exhibiting
behavior closer to target (using a simple sum of differences
between the response of a circuit and target) and penalizes
those farther from it. After evaluation of 100 individuals,
they are sorted according to fitness and a 9% portion (elite
percentage) is set aside, the remaining individuals
undergoing first crossover (70% rate), either among
themselves or with an individual from elite, and then
mutation (4% rate). The entire population is then
reevaluated. In this experiment only two cells of the FPTA
were allocated.

Figure 4 displays snapshots of evolution in progress,
illustrating the response of the best individual in the
population over a set of generations. The first caption
shows the best individual of the initial population, while the
subsequent ones show the best after 5 , 50 and 82
generations.

Figure 3: FPTA cell topology as used in two FPTA chips (FPTA-0 in the left and
FPTA-2 in the right.

I
1 - . .

c) d)
figure 4. Evolution ofa halfwave rectifier showing the
5, c) 50 and linally the solution at generation d) 82. The

With SABLES enabling rapid evolvable hardware
experiments, the focus has shifted from the hardware
platform to algorithms. More specifically the focus
became overcoming problems related to the formulation
of requirements in a way that facilitate evolutions, and the
translation of target specifications into the language of
evolution, including representations, fitness function and
parameters of the algorithm.

Other experiments were performed on SABLES, such
as the evolution of oscillators and signal separators
(Zebulum et al. 2003). SABLES has been a successhl
platform for quick (less than 5 minutes) on-line automatic
synthesis of simple circuits building blocks, such as
rectifiers, filters, oscillators and logic gates. However, we
were not able to synthesize complex circuits using this
system yet. Although we have a powerful tool for
evolution, we still have to find how to use it so as to
explore its full capacity. In order to keep the search space
manageable, we have restricted most of our experiments
to use only a small fraction of the chip, usually two cells
out of 64. The search space to be sampled when using all
cells in the chip is about 25000 (5,000 configuring bits) or
IOi5Oo. Assuming that we can evaluate lo4 circuits per
second and leave an experiment running for one month,
we are only able to sample 10'' individuals, a negligible
fraction of the search space. One approach to circumvent
this problem is to constrain the cells to behave as
OpAmps as discussed earlier and evolve only the cells'
connectivity, thereby reducing the search space. This
method was tried with partial success in the evolution of
signal separators using 10 cells of the chip (Zebulum et al.
2003).

4. Future Approaches and Challenges

4.1. Evolving from high-level specifications

- From behavioral HDL to circuit through synthesizable
HDL.

response of the best individual of generation a) 1, b)
final solution is illustrated on the right.

One way to approach the scalability problem is to first
admit that what we address is an open problem for both
analog and digital (and for system design in general). The
perception in the evolvable hardware community exists
that the digital automated desigdsynthesis problem is
solved by current techniques and tools. What is missed is
that only structural VHDL (Verilog) is synthesizable,
while behavioral VHDL is not. The reason is simple:
structural VHDL offers a problem decomposition! Thus
the tools only have to deal with implementation of a
simpler block, and also the set of library elements offers
easyldirect matches. (The boundary between behavioral
and structural depends on the vendor supported
language/extension and size of IP library, etc). However,
evolutionary design is behavior-oriented and poorly-
specified in form of response curves instead of using
standard language such as HDL. In this context the
following two research directions appear promising:
a) Evolutionav-based compilation of behavioral HDL to
structural HDL (analog ortand digital). Force
specifications to be in a standard behavioral language.
b) Evolutionary-based synthesis of structural AHDL.
Structural AHDL may be the required first step to
automatic analog synthesis. The building blocks may be
sufficiently small to allow evolution to find optimal
solution.
We believe that by decomposing the problem first into a
functional to structural translation and then a structural to
primitives one, the chances of evolution to approach
complex system are much improved.

-Hardwarehofiware evolutionary co-design for
FPGAICPU hybrids and other Systems-on- a-Chip
This direction is especially timely in the context of the
embedded systems industry rapidly moving toward
integration of programmable and reconfigurable devices,
with a powerful convergence toward hybrid FPGNCPU
architectures. Ultimately these will use flavors of on-chip
hybrids such as the new Xilinx Virtex I1 Pro chip. There
are no tools allowing designers to go from system level

specification, e.g., in Matlab/Simulink and convert it to an
efficient hardwarelsoftware allocatiodpartitioning.

4.2 Complexity in Functional Descriptions

A remaining largely unaddressed challenge is related
to increased complexity in functional descriptions. Even
in the case of the simple halfwave rectifier experiment
previously described, providing a complete set of
specifications is not so obvious. The operational range of
the evolved rectifier in the frequency domain is one
potential pitfall, since in principle the circuit behavior
should be evaluated for the overall frequency domain in
which it is expected to work. In that particular case, the
circuits were only tested at 2kH2, and it has been verified
that the solutions only worked in the decade 500Hz-5kHz.

The need for upfront complete specifications is also
reflected in the evolution of a logic gate. An example
described in Stoica et al. (2002) evaluated a circuit
targeted as NAND gate providing input stimulus (using a
SPICE transient analysis) with changes in the
microsecond range. The correct behavior for this
timescale was quickly achieved by evolution. However,
an incorrect behavior was observed when the same circuit
was simulated in the timescale of seconds. Conversely,
when the circuit is evaluated at a large timescale
evolution often led to slow gates. The method applied to
correct this situation was a derivative of the mixed model
search described previously in this paper. In this case the
different models are subject to different analysis. A two-
transient analysis for each candidate circuit was
performed during evolution, the first on a small timescale
and the second on a larger timescale, solving the problem.
For each circuit, the combined fitness measure was
chosen to be the worse between the two evaluations, so
that the genetic algorithm was driven to achieve a correct
behavior at both timescales. However, in order to speed
up evolution, we can assign the candidate solutions to one
model or another during successive generations and thus
letting evolution remove solutions that do not behave well
on both models.

5. Conclusions

New approaches are needed in order to reach the full
potential of evolvable systems. Scalability and
completeness of specifications are primordial. In order to
sample more efficiently the large search space generated
in circuit design problems, techniques such as use of
domain knowledge and building blocks encapsulation are
currently being used. These techniques still have to be
refined to allow the evolution of complex circuits that are
competitive with human design. Another important issue
is to find the right balance between reducing the search
space while keeping the power of Evolutionary
Algorithms to find novel solutions.

It is proposed to approach these problems through
hardware description languages, formulating the

requirements1 specifications in HDL. It is also proposed
to use intermediate, structural level representation, and
thus employ evolution in two phases: behavioral to
structural, and structural to circuits. Evolution proved
efficient in the design of circuits satisfying multiple
constraints.

Acknowledgements

The research described in this paper was performed at the
Jet Propulsion Laboratory, Califomia Institute of
Technology and was sponsored by the Defense Advanced
Research Projects Agency (DARPA) and the National
Aeronautics and Space Administration (NASA).

References
Koza, J. et al. 1999. Genetic Programming 111: Darwinian
Invention and Problem Solving. San Francisco, CA: Morgan
Kaufmann.

Bennett, F. et al. 1999. Evolution by means of genetic
programming of analog circuits that perform digital functions. In
Banzhaf, Wolfgang, Daida, Jason, Eiben, A. E., Garzon, Max
H., Honavar, Vasant, Jakiela, Mark, and Smith, Robert E.
(editors). 1999. GECCO-99: Proceedings of the Genetic and
Evolutionary Computation Conference, Orlando, Florida USA.
San Francisco, CA: Morgan Kaufmann: 1477 - 1483.

Zebulum, R. S., Stoica, A,, and Keymeulen, D. 2001
Experiments on the Evolution of Digital to Analog Converters.
Published in the Proceedings of the 2001 IEEE Aerospace
conference, March, 2001, Montana. ISBN: 0-7803-6600-X
(published in CD).

Stoica, A, Zebulum, R. S. and Keymeulen, 2000. Mixtrinsic
Evolution. In T. Fogarty, J. Miller, A. Thompson and P.
Thompson, (eds.), In Proc. of the Third International Conference
on Evolvable Systems (ICES2000). April, 2000, Edinburgh, UK.
New York, USA, Springer Verlag: 208-217.

Stoica, A. et al. 2001. Reconfigurable VLSI Architectures for
Evolvable Hardware: from Experimental Field Programmable
Transistor Arrays to Evolution-Oriented Chips. IEEE
Transactions on VLSI, IEEE Press, Volume 9, Number 1, ISSg
1063-82 IO: 227-232.

M.I. Ferguson et al. 2002. An Evolvable Hardware PlatfoF'
based on DSP and FPTA. In Proceedings of the Gewtic'and
Evolutionary Computation Conference (GECCQX62), USA.
Memlo Park, CA: AAAI Press: pp145-152.

Stoica, A. et al. 2002. Evolving Circuits in Seconds:
Experiments with a Stand-Alone Board Level Evolvable
System. In Proceedings of the 2002 NASA/DoD Conference on
Evolvable Hardware, Alexandria, VA, IEEE Computer: 67-74.

',

Zebulum, R.S. et al. 2003. Automatic Evolution of Signal
Separators using Reconfigurable Hardware. In Proceedings of
the 2003 International Conference on Evolvable Systems (ICES)
to be held in Norway, Forthcoming.

