Telecommunications Architectures Group (332H)

This group provides innovative contributions to improve and to evolve flight
and ground communications, tracking, and network architectures. This
includes:

Define future deep space communications architecture to enable new NASA missions

Evolve existing Deep Space Network capabilities to anticipate future needs (DSN 2.0)

* Develop advance analysis, modeling, and simulation to support SCaN networks loading,
coverage, link budget, networking studies to support current and future missions. Recent
examples, Deep Space Capacity Study, Human Landing System Study (ongoing)

* Develop new communication/tracking/navigation/radar approaches

Support NASA’s Lunar Relay Network for the era of human explorations. Examples:
* Definition of relay services, e.g. real-time positioning service and time service
* Concept of the advanced relay network architecture

Support Mars Relay Network trade analysis and loading analysis. Examples:
* Mars Sample Return support scenario analysis
 MAVEN attitude and power constrain study

Support DTN standards and research — energy-aware routing, cognitive DTN node
management, distributed service manager, multi-copy LTP (smart ARQ), etc.
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Mission Set Analysis Tool Suite
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NMA Mars Real-Time In-Situ Navigation - System Concept
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Single-Satellite Real-Time Positioning for Moon, Mars, Venus, and Titan

* Novelty: use Doppler & range measurements in a proximity link for positioning

 Two methods:
» Relative positioning: based on the Law of Cosines (LOC), e.g. lunar S. Pole with base station

* Absolute positioning: based on theory of conics, Modified Conics Doppler Localization
(MCDL), e.g. Venus balloon floating in atmosphere

* Doppler equation:

Relative: JDR-LOC Absolute: JDR-MCDL

Visual Description of Doppler Localization
with Law of Cosines. T is the user, R is the
reference station, and C1 is the satellite.
il is the unit vector of the satellite’s
velocity vector and #itis the unit vector
from the reference station to satellite 1.
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Real-Time Tracking/Navigation Using Simultaneous Baselines

Coverage map for 370000 km altitude, (+/-) 28.5 degrees latitude band, 10 degrees mask

* Current DSN tracking techniques (Doppler,
ranging, and ADOR) are non-real-time

* Human lunar exploration requires real-time
tracking/navigation

e Short light-time delay, ~1.5 seconds

Latitude (degrees)

 Critical events are mostly power-flight:
approach/docking, descent, descent, etc.
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Mars Relay Network — Loading and Trade Studies) L.
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MSL ExoMars RSP
Generate relay data throughput predicts between all surface assets and relaying orbiters.
Take into account SC constraints such as radios, attitudes, earth-beta angle, canted angle,
solar eclipses, antenna patterns, etc.

Lay out the principal rules for relay and pass selection for each surface asset.

Assess the sol-to-sol surface ops efficiency based on the Earth team’s planning time and
schedule.

Provide sol-to-sol data volume predicts for each Mars surface asset.

Understand relay support load of the network.

Develop strategies to enhance network relay efficiency.

Study “what-if” scenarios, depending on the availability of the relay orbiters, orbital
commitments, surface user priorities, etc.



Delay Tolerant Networking — Research Portfolio

4 - DTN-enabled DSN Loading . pyion
. Cognitive DTN . Distributed Analyses 'P
B 5 DTN-er.1IabIIEd Computing = = +D3THN
c o aglle 1 @ python’
2 e constellatibn \‘,‘ :
3 ’ ! P R :
s | 4 N :
< L ®

Inter-region and i ION CCSDS Standard

" Multicast Routing  + Hardening Review
g Energy-Aware |
© . 1
a0 Routing i
'S Je+lp 6 +p 6+ 6 +Jp Jet+lp |
> — e 1
o e e = =—= |
o 1

LTP enhancements

|
(o] % . sf f | : AT I Ry ) <
Qg for faded/multi- = | | )
0 . | =
& o band links N | |
o < T bl ,
> © i ==
C - P I
- I
TRL=1-3 TRL=~3 -5 | TRL~5—-6 .
I »
+ Understanding basic principles * High fidelity system * System validation in
simulation/emulation/evaluation simulated/emulated

* Understanding Potential

Applications and benefits * Add hardware-in-the-loop. environment



