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Small Missions to Mars
e Mars Formulation — Small Spacecraft Studies

&

Scientifically Compelling

Mars small spacecraft
can accomplish decadal
class science while being
complementary to
Flagship missions in type
of science investigation.

B

Small affordable spacecraft missions with new launch modes are possible and

VS | Flagship miss
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Study Overview Sl
e Mars Formulation — Small Spacecraft Studies

Motivation and Objectives

 Desire for continued science
investigations during MSR with
smaller, affordable missions

&

* Small spacecraft can augment MSR
by providing frequent, low cost ..
access to compelling science \
investigations at Mars

N ufface'%’%“'\
&

Subsurface

* |dentify science mission concepts
suitable for small spacecraft
implementation

* Include concepts to target Mars
orbit as well as the Martian
« surface/subsurface

\Lt
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Compelling Science from Small Spacecraft

Mars Formulation — Small Spacecraft Studies

&
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Resolution EM
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High va/ue science at low cost, complementary to MSR.
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Compelling Science from Small Spacecraft:
Key Findings
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Fundamental & New Groundwater; EM Fields; H,O/CO, Condensation at Poles;
Single Measurements Subsurface Redox Profiles; Exogenic Influx; etc.

-

-~

Targeted Science High Resolution Imaging (Visual, IR, Spectroscopic) for landing site
. Oneinstrument selection and reconnaissance; Exogenic Influx & Chemistry; Trace
drives all. Gas Sinks, Sources, and Transport; Groundwater, etc.

Special Landing Special Locations, such as Poles, Valles Marineris, Southern
Zones are Enabled | Highlands, Lowest Altitude, Caves, etc.

»

U DI i SEBIE: Atmospheric Erosion Drivers; Trace Gas Sinks, Sources, and
* Global Coverage

. Transport; Weather Dynamics; Wind Dynamics; Dust & Aeolian
NS " Dynamics; Surface-Subsurface Exchange of Vapor
Dynamics/Transport.
3D Seismology; 3D Radar; EM Propagation, etc.

» Causality
* Processes

Scouts
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Compelling Smallsat Science:
From Orbit and On the Surface
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e
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Eigenbrode et al. (2018), Science
Organic Matter at Gale Crater
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Compelling Science from Orbit
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e Timely & recent decadal class science questions well suited for

Mars small spacecraft in Mars orbit. Origins & sinks of variable CH,

and origins of organics
Webster et al. (2018), Science

Trace Gas Localization

@ MY31 direct ingest
B MY32 direct ingest
O MY33 direct ingest
B MY34 direct ingest
@® MY32enrich
O MY33 enrich
® MY34 enrich

-
o

l__ Questions: where is methane coming from, where is it
destroyed? Is the source abiotic or biotic (extlnct VS
extant).

e Areostationary configuration can answer this question
by monitoring one constant field of view.

Methane Abundance (ppbv)

Delivery of Organics by Meteoroids o 40 80 170 160 200 240 260 320 360

Solar Longitude (degrees)

e Questions: How much material, especially organics, is
i delivered to the surface (Exogenic Influx) Figenbrode et al. (2018), Science
\ : : ' : . Organic Matter at Gale Crater
e CCD whole-disk monitoring device with selected s

filters staring from areostationary orbit can address J
this question.
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Compelling Science for Surface/Subsurface Na:
e Mars Formulation — Small Spacecraft Studies

&

e Timely & recent decadal class science questions well suited for
Mars small spacecraft for Mars surface/subsurface.

Explore subsurface habitability by seeking
evidence of groundwater & trace gases.

Groundwater

9 : Orosei et al. (2018), Science

e Questions: Is there liquid water in the
subsurface, what is its chemistry?

e Small TEM (transient electromagnetic)
sounders can answer this question.

O, solubility in Ca-perchlorate brines 10G+10(I02]ag)

4-D Networks & Scouts

° Quest|ons What |S the Spatlal and raseee ::.‘1: e l
temporal variability in key properties : =g o7

9

T
across the surface and subsurface (with QE,
surface assets or penetrators)? s
e Weather, sniffers, EM field, subsurface- T o o s
atmosphere exchange (global coverage of ST et

fundamental fast-changing processes) . - 50
e Longitudein deg

Stamenkovic et al. (2018), Nature Geo

Pre-decisional. For planningand'd

3/8/21 © 2019. California Institute of Technology. Government sponsorship ack



Jet Propulsion Laboratory
California Institute of Technology

1. Piggyback to Mars Marco

M2020 (2020) 0
Psyche FB (2022)

)
Mass: varies / Boyond???
” MarCo DS2

MSR (2026?)
Frequency: > 2 years 2018 1999

2. Earth Rideshare + Propulsion .

eseA rma ﬁ ‘ >
Mass: 100-400 kg o R 'fry —X.
Frequency: > 6 per yr > BN 7

Adapter

3. Dedicated Launch

o
Mass: 100-300 kg \',H /f%f::.?v:fff::::afz
[}

Frequency: 2021+ Alpha ballistically for direct entry
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Path to Mars Orbit Via Rideshare .
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2300 m/s
Inclination constraints

q 9 - q
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Promising Small Launch Vehicles for Mars
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Company Rocket Cost  1st Launch Fairing LEO Mars Entry* LMO™ (w/ AB) &
FireFly Alpha $15M  late2019 2.0 1000 kg 200kg 130 kg
Relativity Space  Terran 1 S10M  late 2020 1.9 1250 kg 250 kg 160 kg
ABL Space RS1 S12M late 2020 1.8 1200 kg 240 kg 150 kg

Kl -

<FTMmMg="

A E R @ 5 P A € B

*Additional “kick” stage required for Trans-Mars Injection

Assumptions
* Use STAR 30E kick stage

* May need to be stretched

* 20 kg for adapter

* 300 km LMO uses biprop to 24hr orbit
* 6 mos. for aerobraking

Lunette Concept (2009)
Star 27, 2 km/s LOI
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MaSMi (AXE) Interplanetary EP Thruster

e MaSMi thruster ideally suited for small EP
missions to Mars
— Magnetically Shielded Miniature Hall Thruster
— Developed and tested at JPL

— Recently licensed to Apollo Fusion for production
(labeled Apollo Xenon Engine or AXE)

e Shielding = 10x lifetime vs. conventional Hall

Lifetime: 10,000+ hrs
Production: 2020
Mass: < 5 kg

Xenon: 200+ kg

Max Power 1075 W
Min Power 160 W
Isp 1935s
Thrust 69 mN
Efficiency 51%

Pre-decisional. For planning
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L
m NEWS OPINION VIDEO

Apollo Fusion obtains Hall
thruster technology from JPL

Jeff Foust
‘ . »
“ |

\

Apollo Fusion is licensing technology from JPL to create a
new high-power Hall thruster called AXE that offers a
longer lifetime than existing systems. Credit: R. Conversano,
Jet Propulsion Laboratory, California Institute of Technology

WASHINGTON — Satellite electric propulsion startup
Apollo Fusion is expanding its product line through an
agreement with NASA’s Jet Propulsion Laboratory,

giving it access to advanced Hall thruster technology.

The Silicon Valley-based company said May 7 that it
signed a deal that gives it an exclusive worldwide
commercial license for JPL’s Magnetically Shielded
Miniature, or MaSMi, Hall thruster technology, as well
as a contract to provide JPL with three thrusters that
use that technology.



AREO TGL: High Orbit Concept Case Study

Areostationary Trace Gas Localizer

B
Features

Mass: ~190 kg dry mass

Target: Mars — Areostationary Orbit
Configuration: Single s/c, constellation
Launch: Secondary P/L on ESPA Grande

Cruise: Solar electric propulsion
Risk Class: D

Lifetime: ~3 years in orbit then
replenished

Telecom: Ka-Band, Direct to Earth,

MAVEN-class data rates.

L e—————————— .
Science & Instruments
3

* |ocalization and diurnal

concentrations of methane and

water and its isotopologues.

* Spatial Heterodyne Spectrometer

(JPL)
* Camera

L ee——————
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e Yy patches 2. Detail mapping mode 4
Region of interest (ROI) identified
D FOV = 0.06° x 0.06°
- GSD=17kmx 17 km
- 49 points
1.0m HGA - DTC 0.5m HGA — Cross/Prox "
DTE - Ka/X Band = Link 4

Cross link - X-Band
Proximity - X Band
Cross link — ~1000kbps
Proximity — ~800 kbps

DTE - ~300kbps @

1.5AU
15’ Separation Ring
For ESPA integration.

! JPL or COTS bus

(2) Ma?Ml Hall Thrusters provider with SPHINX
or (1) SPT-100 Hall “ - i ) 7 avionics, GN&C, power
Thruster b control, and thermal
Xenon lank and Feed capability.
System

Possible placement of

nadir instruments. CBE Mass Contingency Contingency Total Mass

[ke] [%] [ke] (CBE+Cont) [kg]

CBE + Contingency [kg]
P . S System Margin* [%]
i Dry Mass + System Margin [kg]
Propellant Mass [kg]
S/C Wet Mass [kg]

CO n Ste | | at | O ﬂ System Target Mass [kg]
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Surface/Subsurface Concept Case Study

SHIELD Impact Lander Concept
.

SHIELD — Small High Impact Energy Landing

Device

* SHIELD enables the transportation of
small scientific payload affordably to
the surface;

* Mass ~50kg, 60 m/s, impact load range
1000 g — 2000 g.

* Total science payload up to 6 kg.

* Science payload can vary, investigating
options for mobility.

» Science goals of high priority for
Decadal science, MEPAG, and HEO
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&

Solar cells

Struts with crushable, 150mm stroke capabilit

payload :

Nose with crushable

Deceleration due to Rigid Surface Impact

Impact to Rigid Surface
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Summary Thoughts and Discussion
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Several emerging trends are creating a unique new opportunity for compelling Mars science €
missions at radically reduced cost relative to Discovery

Low-cost rideshare and new commercial launch vehicle providers

Efficient smallsat-scale EP solutions for Mars transfer from GTO

Low-complexity hard-lander concepts for Mars surface access

Low-SWaP avionics and instrument capabilities

S100M - $S300M represents a technological “sweet spot” with high science return above current
SIMPLEx $S55M cap (insufficient for high-value planetary science missions) but far below Discovery
total mission cost

How can/should the international Mars community leverage this opportunity?

Refine focused Mars science mission concepts suited to smallsat implementation

Advocate for a new class of Mars smallsat missions in upcoming NASA Decadal Survey
Consider smallsat missions for critical Mars infrastructure (e.g., telecom relay, hi-res recon...)
Seek international partnerships leveraging complementary capabilities to further affordability

Total Mission Cost

SIVERSE  New Smallsat Discovery New Frontiers

$55M

3/8/21

Class

$500M + ELV $850M + ELV

$200M $S400M S600M $S800M $1B
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Annual Access to Mars
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Compiled internal database of US EELV L

Statistics si 2002: 1 I h f Atlas V,
launches: Atlas V, Delta 4, Falcon 9 atistics since 68 total launches o as'V,

Delta 4, and Falcon 9 .
~50% go to GEO

0
GTO+
19%

US EELV Launches as of 06/2018

B EELV Launches

e e e

B GTO or Beyond

a3z
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=== We can reliably count on an affordable GTO launch opportunity as a secondary
payload brokered by one of the brokers and/or integrators.
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