Close-in Giant Planet Formation
via In-situ Gas Accretion &
the Natal Disk Properties

Yasuhiro Hasegawa
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Use the observed occurrence rate
in order to derive some observables
(e.g., the gas surface density)
under
the in-situ gas accretion scenario



Basic Hypothesis:

the occurrence rate ~ gas accretion onto planets
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Basic Hypothesis:

the occurrence rate ~ gas accretion onto planets
Gas accretion

Kelvin-Helmholtz contraction
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Basic Hypothesis:

the occurrence rate ~ gas accretion onto planets
Gas accretion

Kelvin-Helmholtz contraction
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the occurrence rate oc M, = f(Ty, %)

Yo < f(Occurrence rate)

with the steady state disk accretion model



Results: Gas Surface Density Profile
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Gas surface density increases with increasing the distance from
the central star (cf. Minimum-mass solar nebula 7“_3/2)

The overall profiles do not depend on opacities



Results: Magnetic Field Profiles

B-field profiles switch
around at 0.1 au

from x> to x r 2
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Implications

B-field profiles switch
around at 0.1 au

from x> to x r 2
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SuMmMary  Hasegawa et al, 2019b,A&A, 629, L|

® The origin of close-in giant planets is still unclear

® [he occurrence rate distribution has some intriguing
structure

® Developed the simple, semi-analytical model under the
hypothesis that the occurrence rate distribution may
reflect gas accretion rates onto protoplanets

® The gas surface density increases with increasing the
distance from the central star (cf. MMSN model)

® The occurrence rate distribution may trace the magnetic
field profile - stellar dipole fields dominate at r < 0.] au
and the large scale field may be important at r > 0.1 au



