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Simulations of fluid mixing occurring at high-pressures mandate the use of real-fluid equa-
tions of state to capture the effect of both intermolecular repulsive forces and attractive forces
which are neglected in perfect gases. Dedicated mixing rules account for these forces by provid-
ing a genericmapping of themixture state-space onto a pure fluid domain. However, the specific
inter-species molecular forces depend on the particular characteristics of the molecular pairs
under consideration, and typically require the knowledge of binary interaction coefficients kαβ .
The impact of kαβ on a flow field is as of now unclear; further, kαβ is unknown for many
molecular pairs and when unknown, set to be null. This study addresses the impact of kαβ on
the temporal evolution of a real-fluid mixing layer and uses Direct Numerical Simulation (DNS)
to explore this impact. The results show differences between augmented attraction (kαβ < 0)
and diminished attraction (kαβ > 0), affecting both fluid dynamics and diffusion processes.
Specifically, in a binary mixing layer, it is observed that augmented attraction leads to delayed
transition and mixing layer growth, manifested in the momentum layer thickness. The frac-
tal dimension, which is a manifestation of interface corrugation, is calculated. These results
provide an hitherto undocumented mechanism affecting the development of mixing layers.

I. Introduction
High-pressure injection and mixing processes occur in many technical combustion systems, such as gas turbines,

Diesel engines, or rocket engines. In many cases, fluid thermodynamics can no longer be determined assuming perfect
gas behavior, and the effect of intermolecular forces on thermodynamic and transport properties must be taken into
account. Real gas equations of state (EOS), such as the Peng-Robinson EOS [1], include both repulsive and attractive
forces that result in a representation of liquid, gaseous, and supercritical states [2]. The use of real fluid EOS is
considered necessary for propulsion simulations [3, 4].

For cubic equations of state, such as the Peng-Robinson EOS, for pure fluids, only the knowledge of the critical
pressure pcr , the critical temperature Tcr , and the acentric factor ω are necessary; these values are usually tabulated.
Mixtures are treated as virtual pure fluids, with the mixture parameters determined using mixing rules from the pure
components. Several such mixing rules exist, and they are mostly heuristic in nature [5]. For the attractive term, mostly
the geometric Bertholot mixing rule is utilized [2]. While mixing rules account for a general averaged interaction
between the unlike molecular pairs, the physical reality is more complicated and depends on the exact molecules under
consideration. To this end, a corrective factor, the binary interaction coefficient kαβ , accounts for intermolecular forces
deviating from the generalized average state [6].

However, kαβ is only available for a limited number of binary pairings, owing to the classical way of fitting it to
experimental data for a specific mixture [5]. Values are typically tabulated [5, 7]. When kαβ is unknown, it is often
assumed null. As of now, it is unclear whether neglecting kαβ in this manner has an impact on a flow field, both
macroscopically (e.g. shear layer growth, fractal dimension) and microscopically (e.g. diffusion of heat and mass).

Thus, the purpose of this study is to compare the temporal evolution of two mixing layers of identical initial
conditions – specifically identical density ratio, Mach number, and Reynolds number – but with different values of kαβ ,
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accounting for augmented and diminished strengths of the intermolecular attractive forces, respectively.

II. Governing equations

A. Differential conservation equations
The conservation equations for mass, momentum, total energy et and species partial mass are:

∂ρ

∂t
+

∂

∂xj

[
ρu j

]
= 0, (1)

∂

∂t
(ρui) +

∂

∂xj

[
ρuiu j + pδi j − σi j

]
= 0, (2)

∂

∂t
(ρet ) +

∂

∂xj

[
(ρet + p) u j − uiσi j + qj

]
= 0, (3)

∂

∂t
(ρYα) +

∂

∂xj

[
ρYα u j + Jα j

]
= 0, (4)

where α ∈ [1, N − 1], t represents the time, x is a Cartesian coordinate, subscripts i and j refer to the spatial coordinates,
ρ is the mass density, ui is the velocity, et = e + uiui/2, e is the internal energy, Yα is the mass fraction of species α and
N is the number of species, σi j is the Newtonian viscous stress tensor

σi j = µ

(
2Si j −

2
3

Skkδi j

)
, Si j =

1
2

(
∂ui
∂xj
+
∂u j

∂xi

)
, (5)

where µ is the viscosity, Si j is the strain-rate tensor, and Jα j and qj are the j-direction species-α mass flux and heat flux,
respectively.

The conservation equations have been presented in extensive details in [8] and [9]. These conservation equations
are based on fluctuation-dissipation theory [10] which uses the complete form of the species-diffusion fluxes and of the
heat flux, all of which utilize the full matrices of mass-diffusion coefficients and thermal-diffusion factors derived by
[11]. The equations are solved in conservative form.

B. Equation of state
The system of conservation equations is complemented by the Peng-Robinson (PR) [1] EOS

p =
RuT

(vPR − bmix)
−

amix(
v2
PR + 2bmixvPR − b2

mix
) . (6)

Here, Ru is the universal gas constant, vPR is the molar PR volume, and v = vPR + vs where vs is a volume correction
to make the PR EOS more accurate; amix and bmix are functions of the temperature T and species-α mole fraction Xα

amix =

N∑
α=1

N∑
β=1

XαXβ
√

aαaβ(1 − kαβ); bmix =

N∑
α=1

Xαbα (7)

where the computation of aα, aβ and bα is described in detail elsewhere [8]. Reference data for the relevant species are
calculated using the highly accurate Lee-Kesler method [5, 12] based on an improved Benedict-Webb-Rubin type EOS,
as determined before for the species used herein [13].

III. Binary interaction coefficients
The binary interaction coefficient kαβ in Eq. (7) is a corrective factor that increases accuracy of the EOS mixing

rules to account for the actual molecular interaction. Its impact on mixture behavior is substantial; bubble and vapor
curves cannot be reproduced quantitatively, and even the general mixture Type according to the van Konynenburg-Scott
classification [14] cannot be determined without an appropriate value. The difficulty lies in the fact that kαβ cannot be
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determined from first principles, but it is instead typically found by fitting vapor-liquid-equilibrium (VLE) calculations
to experimental data [2].

An alternative was proposed by Jaubert and his group [15–17]. The authors do not fit kαβ for each binary molecular
pair, but instead decompose each molecule into groups (such as CH3, CH2, etc.) to evaluate the contribution of these
groups to kαβ as building blocks. Then, kαβ is expressed as a function of T , species-specific critical parameters, and the
relevant groups. Notably, kαβ is not a function of p. A regression analysis is performed over a database containing
many species according to their respective group composition, rather than a binary pair. Then, knowledge of the groups
is the only information necessary to evaluate kαβ , even for species without VLE measurements. For example, fitted
coefficients for the groups CH3 and CH2 allow to determine kαβ for interactions between all pairs of alkanes. In this
way, the Peng-Robinson kαβ can be determined for new species, as long as data are available for the constitutive groups
of that species. The approach is reminiscent of Benson’s group additivity theory [18] and of the method of Kourdis and
Bellan [19] for developing reduced kinetics.

The set of tabulated (tab) and computed interaction coefficients using group contribution (gc) method will be
referred to as k tab

αβ and kgc
αβ , and is listed in Table 1. The kgc

αβ from the group contribution method are averaged over the
temperature in the simulation T = {600, 1000} K and used as constant values in the simulation; general theory states
that the kαβ T-dependence is small [5].

α β k tab
αβ [7] kgc

αβ [20]

n-C7H16 N2 0.1441 -0.2156

Table 1 Binary interaction coefficients.

IV. Configuration and initial conditions
The configuration is that of a temporal mixing layer having two streams, each stream initially hosting a single

species: C7H14 (denser fluid) in the lower stream and N2 (lighter fluid) in the upper stream. Initially, the layer hosts four
spanwise vortices and the mean flow is initially perturbed, thereby triggering vortex growth and merging, as well as
species mixing. The layer evolves through two vortex pairings, a process from which ultimately a single vortex emerges
in which small scales proliferate.

Two cases are here compared in order to assess the effect of two values of the binary interaction coefficients, k tab
αβ and

kgc
αβ, on the evolution of the layer and the compositional field. The test DNS realizations are all at p = 60 bar with an

initial Reynolds number Re0 = 1000 (see [9] for the definition). The grid size is 480 × 530 × 288, having been shown to
resolve all scales relevant to dissipation [13]. The initial conditions are listed in Table 2. The current state of knowledge
is such that, the expectation is that, having an identical density ratio, Mach number and momentum flux ratio, these
layers will develop identically.

V. Results
The exposition of the results starts with integral values, then proceeds with the fuel mole fraction fields, the fractal

dimension of the mixing layer, and finally addresses the density gradient.

A. Integral values
Figure 1 illustrates the temporal evolution of the momentum layer thickness, δm. A non-dimensional time is defined,

t∗ = t∆U0/δω,0, where ∆U0 is the initial velocity difference between streams and δω,0 is the initial vorticity thickness
computed from the initial mean velocity (see [9] for the details). The results show that despite identical initial conditions,
the shear layers using tabulated values of k tab

αβ and k tab
αβ develop differently. The momentum layer thickness (see [9] for

the definition) growth is initially slower for kgc
αβ , but eventually reaches higher growth rates. A local plateau eventually

establishes at t∗ ≈ 100, signifying the merging of a two-vortex structure to a single vortex, and the δm/δω,0 value at this
plateau reaches a larger magnitude for kgc

αβ .
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TU K 1000
TL K 600
ρU kg/m3 20.06
ρL kg/m3 260.09
ρL/ρU - 12.97
(ρu)U kg/m2s 5141.98
(ρu)L kg/m2s 18515.44
(ρu)L/(ρu)U - 3.60
ZU - 1.02
ZL - 0.47

Table 2 Flow initial conditions. Subscripts U and L denote the upper and lower layer, respectively.

Fig. 1(b) shows the t∗ evolution of the magnitude of the spanwise positive vorticity (see [9] for the definition). The
development of the (gc) case is delayed compared to (tab), although the same magnitude is reached at a later t∗ value.
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(a) Momentum layer thickness.
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(b) Spanwise positive magnitude of vorticity.

Fig. 1 Evolution of integral shear layer quantities as a function of t∗.

B. Fuel mole fraction field
An understanding of the developing composition field can be gained from Figs. 2 and 3, showing a comparison of

the temporal evolution of the fuel mole fraction for the two values of the binary interaction coefficient. At t∗ ≈ 40, the
four-vortex structure has become a two-vortex structure, which merge to a single vortex at t∗ ≈ 100.

Consistent with Fig. 1, the layer computed using kgc
αβ appears to have delayed species-mixing development and the

composition field exhibits a decreased number of smaller structures. At t∗ ≈ 40 in Fig. 2, N2 is seen to be entrained
into C7H16 for the simulation using k tab

αβ , whereas the simulation using kgc
αβ exhibits a stricter separation of species

distributions. This also indicates that the fuel-side boundary between the mixing layer and the fuel stream is more
convoluted for k tab

αβ than for k tab
αβ . At t∗ > 80, however, the fuel-side boundary appears similarly convoluted for both

cases. Generally, the nitrogen-side boundary appears smoother than the fuel-side boundary. The apparently lesser
convolved structures observed initially for kgc

αβ suggest delayed mixing and perhaps a reduced density gradient.

C. Fractal dimension of the mixing layer
In order to measure interfacial roughness accurately, we determine the fractal dimension D f of the shear layer

interface. Specifically, we analyze the fractal dimension for interfaces defined by a given fuel mole fraction z. As a
preliminary to computing D f , in Fig. 4 regions of z = 0.001, 0.25, 0.5, 0.75 for the (tab) simulation, going from regions
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Fig. 2 Distribution of fuel mole fraction z for (tab) - left column, and (gc) - right columns, for t∗ = [20, 40, 60]
from top to bottom. Shown is the x3/L3 = 1/16 plane, where δω,0 is the initial vorticity thickness of the layer.
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Fig. 3 Distribution of fuel mole fraction z for (tab) - left column, and (gc) - right columns, for t∗ = [80, 100, 120]
from top to bottom. Shown is the x3/L3 = 1/16 plane, where δω,0 is the initial vorticity thickness of the layer.
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where only very small amount of the denser fluid exist to regions essentially dominated by the denser fluid. Only the
mixing layer is represented, and the regions of pure fluid do not appear. It is clear that the interfaces between regions of
constant z becomes more convoluted as t∗ increases, and the lighter-fluid side appears smoother than the denser fluid
side. For z → 0 or z → 1 the contour is smooth, with the expectation that D f → 1.

Fig. 4 Regions of z = 0.001, 0.25, 0.5, 0.75 and 0.999 for (tab) at t∗ = 60 (left) and t∗ = 100 (right).

In figure 5 (tab) and (gc) results are compared at increasing t∗ values, and the information is consistent with that of
Fig. 4. Each point D f (z) corresponds to the fractal dimension of the z iso-contour defining a constant z region. Indeed,
D f ≈ 1 for early times and towards the pure fluid boundaries. Consistent with Figs. 2 and 3, the fuel side (z → 1) is
deforms first until at t∗ = 100 the mixing layer has deformed over the entire composition range. Notably, (tab) reaches
higher values of D f earlier, and the deformation affects regions of small z earlier during the layer evolution. After
t∗ = 100, the D f distributions of both cases are comparable.

D. Density gradient
Figures 6 and 7 show that |∇ρ| is representative of the changes between iso-contours of z = constant regions (see

Figs. 2, 3 and 4). The results show that, consistent with the larger diversity of states obtained, using kgc
αβ increases the

resulting |∇ρ|max compared to k tab
αβ . This finding indicated that using kgc

αβ results in reduced mixing and accordingly
foreseen increased scalar dissipation.

Visualizations of the density gradient field in Figs. 6 and 7 support the notion of a different diffusional evolution of
the mixing layer for the (tab) and (gc) cases. Initially, the (tab) |∇ρ| field seems more diffusive, by t∗ = 60 it is clear that
its boundaries appear more wrinkled for (tab), and by t∗ = 80 small round structures are formed on the nitrogen side of
(tab). Similarly, high |∇ρ| separate round structures appear into the fuel stream for (tab) at t∗ = 100 and for (gc) at
t∗ = 120. To quantitatively evaluate |∇ρ| , its probability density function is evaluated for the )tab) and (gc) at different
t∗ values and is displayed in Fig. 8. Figure 8 indicates that (tab) and (gc) case develop qualitatively similarly, but that
quantitative differences exist, particularly in the high |∇ρ|-value regions.

VI. Conclusions
The study evaluates the impact of the binary interaction coefficient kαβ , a corrective factor accounting for inter-species

attractive forces, on the development of a two species turbulent shear layer under real fluid conditions. Two mixing
layers of identical initial conditions have been simulated using Direct Numerical Simulation; the only difference between
simulations is the value of kαβ . The results show that the qualitative evolution of the mixing layers is similar, but the
quantitative evolution is different both from the fluid dynamic (entrainment) and compositional viewpoint (species
diffusion). Specifically, it was found that a kαβ < 0, signifying augmented inter-species attraction, results in a delayed
development of momentum layer thickness. These results underline the importance of the accurate value of kαβ . Further,
the results also call to caution, as both values of kαβ are taken from published literature for the mixture and further
studies are necessary to determine which value is accurate.
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Fig. 5 Evolution of the fractal dimension D f as a function of z for various values of t∗.
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Fig. 6 Distribution in the x3/L3 = 1/16 plane of the density gradient in log10 |∇ρ| for (tab) - left column, and
(gc) - right columns, for t∗ = [20, 40, 60] from top to bottom.
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Fig. 7 Distribution in the x3/L3 = 1/16 plane of the density gradient in log10 |∇ρ| for (tab) - left column, and
(gc) - right columns, for t∗ = [80, 100, 120] from top to bottom.
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Fig. 8 Probability density distribution of the density gradient in the x3/L3 = 1/16 plane.
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