
Optimized training of deep neural network for image analysis using
synthetic targets and augmented reality

Thomas Lu, Alexander Huyen, Luan Nguyen, Joseph Osborne, Sarah Eldin, and Kyongsik

Yun

NASA/Jet Propulsion Lab/California Institute of Technology, Pasadena, CA, USA

ABSTRACT

Acquiring large amounts of data for training and testing Deep Learning (DL) models is time consuming
and costly. The development of a process to generate synthetic objects and scenes using 3D graphics
software is presented. By programming the path and environment in a 3D graphical engine, complex
objects and scenes can be generated for the purpose of training and testing a Deep Neural Network (DNN)
model in specific vision tasks. An automatic process has been developed to label and segment objects in
synthetic images and generate their corresponding ground truth files. Performances of DNNs trained with
synthetic data have been shown to outperform DNNs trained with real data.

Key Words: Deep Neural Network, Synthetic data, Training & testing, Optimized training, Computer vision,
Pattern recognition.

1. INTRODUCTION

Deep Learning (DL) has become a popular research topic. The advancement of Graphical Processing Unit (GPU)
technology has made it possible to perform massively parallel processing of large amounts of data using Deep Neural
Networks (DNN). The training of DNNs in computer vision requires a large amount of annotated data. In order to
train a DNN for general pattern recognition tasks, or a specific application, tens of thousands, even millions of training
and testing images need to be collected for training and testing the DNN model. Acquiring real training data faces
many limitations such as high cost, limited quantity, and demanding labor. Manual labeling can take months, even
years to complete as it requires operators to spend several minutes annotating each image. For example, the PASCAL
VOC 2012 dataset, which contains 11,530 images with 27,450 bounding box objects and 6,929 segmentations, was
created from 2005 to 2012 [1]. The Caltech Pedestrian Dataset [2] contains 350,000 labeled instances with bounding
boxes. The Microsoft Common Objects in COntext (MS COCO) dataset contains 91 common object categories with
82 of them having more than 5,000 labeled instances. In total the dataset has 2,500,000 labeled instances in 328,000
images. [3]. ImageNet contains approximately 15 million annotated images organized by the semantic hierarchy of
WordNet. Each concept in WordNet is described by multiple words or word phrases that are called “synonym sets”
or “synsets”. [4]. Although these image databases have been constructed with large numbers of annotated images,
they still only represent a tiny fraction of our visual world.

The difficulty of collecting real data poses a huge obstacle to improving the performance of DNNs. Images in more
extreme environments are hard to find, thus limiting the applications of computer vision. It is especially difficult to
obtain many training samples and specific types of training data. An automated process could significantly reduce the
time and eliminate the labor required for this tedious process. DNNs are commonly used in object detection. Common
applications of object detection include target tracking and autonomous vehicles.

Synthetic data is lot more convenient to create in comparison to real data. It can be easily generated as opposed to
flying a drone to take real videos with a limited amount of resources. In addition, manually labeling is not only
inefficient but risks error on the labeler’s end. Synthetic data has been used as a substitute for real data with similar
performance when the network is trained on real data [5]. For example, a technique was presented using structured
domain randomization to train models on simulated images by randomizing the objects in the simulation [6]. This
enables the neural network to take the context around an object into consideration during object detection. The network
has shown to outperform other synthetic and real images and can be applied universally.

This paper presents the development of a process to generate synthetic objects and scenes using 3D graphics software.
By programing the path and environment in a 3D graphical engine, complex objects and scenes can be generated for
the purpose of training and testing a DNN model for a specific vision task. An automatic process has been developed
to label and segment objects in the synthetic images and generate corresponding ground truth files. Comparison of
the DNN performances has been performed between DNNs trained with real data versus synthetic data. By creating
more mission specific synthetic data, the DNNs trained with synthetic data outperform the DNNs trained with limited
real data.

2. TRAINING DATA GENERATION

2.1. Real Training Data Collection
A DNN was trained for image analysis on drone viewpoints. As a baseline, we first used real drone video footage to
train a DNN for object identification. Video footage of exclusively aerial views from drones were acquired for the
purpose of this specific task. We collected video images in three categories: drone views in (a) Urban (b) Forest, and
(c) Desert environments, as shown in Figure 1. It is important to train the DNN in different environments so that it
can eventually be implemented for generalized contexts. Standard image databases today do not account for objects
in specific drone view environments. The background is taken into consideration during DNN training which is why
it is necessary to utilize these various environments when training. A variety of different colored objects were
considered when searching for images. A diversified dataset is required to prevent overfitting of features [7], such as
identifying cars and trucks are not solely limited to one color. These images were classified into one of three
environments: desert, forest, and urban. Once a training video was selected, a frame was extracted in intervals of a
few seconds. This would produce thousands of extracted frames per video. It is necessary to preselect the frames in
which they differ from one another, usually from the movement or direction of a given object. This will enable the
network to identify the given objects at various moments in time or angles.

 A total of 1,108 real training images were
collected from drone footage.
Approximately 90 hours were needed to
collect the images from online resources
and an additional 30 hours to annotate
them. It was necessary to collect videos
opposed to random images to ensure
consistency in the training and testing
frames. Similar images are needed to train
the DNN in order for the network to

gradually notice subtle differences [8]. A limited dataset was produced in comparison to datasets that consist of
thousands of images for general purpose object classification.

For the desert category, a total of 322 images were selected for training purposes while 221 separate images were used
for testing purposes. For the forest environment, a total of 303 training images were chosen along with 200 testing
images. Lastly, for the urban area a total of 62 training images were collected. This is the most difficult environment
to gather images from, as most of the online videos in this environment contain a condensed number of objects. Each
image contained approximately 1-6 objects.

It is important to note that the training and testing images were collected from completely separate videos. Although
the network was previously trained on similar images from the same environment, the images that they are tested on
are new images that have not been previously introduced to the network. This will effectively test the network’s
performance on new images. Each video contained about 50 extracted images, with a total of approximately 163 drone
videos used.

2.2. Synthetic Data Generation
As an alternative to collecting real training data, a method has been developed to generate synthetic data using
augmented reality. The use of synthetic data has grown in popularity due to its advantages in practical applications
[8]. Synthetic data has already played a huge role in making machine learning more accessible as shown in autonomous
driving. NVIDIA’s Structured Domain Randomization [9] uses images captured in simulations of randomly generated
driving situations. For our task, synthetic data was created using ARMA3, a gaming engine developed by Bohemia

 (a) (b) (c)
Figure 1: Examples of real drone view training images for DNN:

(a) Urban, (b) Forrest, and (c) Desert environments.

Interactive [10]. Examples of synthetic training images are shown in Figure 2. The synthetic data contains realistic
objects that share similar characteristics to real objects.

In order to generate effective
synthetic data, a realistic 3D
environment is needed. The
most realistic 3D graphical
environments are typically
created with video games
engines, such as the Unreal 4 or
Unity Engines [11, 12]. This
technique of gathering training
data has gained popularity
recently with other projects, such
as ResearchDoom and
CocoDoom [13]. While 3D
environments have their

limitations when used on their
own, they can augment real data
when combined together,

allowing for only relatively small amounts of real data to be required. Figure 3 shows a synthetic image (left) which
mimics the features of a real image (right). The synthetic data approach can save costs and drastically reduce time
spent gathering and preparing training data.

These 3D graphics engines offer an
easy to use and easy to customize
solution for creating unique
environments that reflect those of
the real world. We chose to use the
video game ARMA3 as a basis for
the 3D environment, the built-in
scripting language offers freedom
to reprogram some aspects of the

game and the environments it
models. ARMA3 is a popular video
game with an active community of

users who support a wide array of modifications [11]. The abundance of free and readily available assets saves time
and offers the ability to create a wider variety of synthetic scenes. The amount of assets and the built-in scripting
language allow for extensive customizability. Figure 4 shows a simulation of different weather effects in a synthetic
image.

 (a) Sunny (b) Foggy (c) Morning fog (d) Rain

Figure 4: Examples of generated synthetic data in different weather conditions.

Most 3D graphical environments allow for some level of custom texturing and asset modeling [12]. These custom
models are often more detailed than the default ones that come with the environment and the increased detail makes
the images look more realistic. The ability to generate custom models means very specific scenarios can be generated,
allowing for more robust training. The Unity and Unreal Engines’ scripting language can program elaborate and very
specific actions [13]. Assets can be programmed to walk down a street, or drive a truck in a loop for example.
Programming an assets’ movements makes them appear more organic in the data. Combined with post-processing

 (a) (b) (c)

 (d) (e) (f)
Figure 2: Examples of synthetic images in various environments: (a) and (b):

Urban, (c) Desert, (d) Ocean, (e) Forrest, and (f) Inside a room.

 (a) (b)
Figure 3: Generating a synthetic image (a) to mimic similar features found in the

real image (b).

effects can make some synthetic images indistinguishable from real ones. The scripting languages also allows
extraction of various types of metadata about the assets in the game that can be used for annotation and obtaining
ground truths later [14]. The process for generating the ground truths automatically will be discussed later in Section
2.4.

The synthetic images are high
resolution images in HD format
(1920x1200 pixels). It can generate
quite realistic objects and
background environments.
However, small objects could be
pixelated, as shown in Figure 5(a).
A Gaussian blur filter is applied
during the post-processing step
(Figure 5(b). The blurred image
matches the characteristic of the real
object (Figure 5(c)).

2.3. Manual Labeling Process
In order to make the training or testing data, every image needs to be labeled. The manual labeling process is a very
tedious and time-consuming process. During manual annotation, a polygon is created to outline the figure of each
targeted object. The polygon’s starting point will be located in the same region as it’s ending point. A mask is outlined
within the polygon to represent the targeted object. Once the manual clicking is complete per object, the user can label
the object in order for the network to know which category to classify it in. After this, the user can move onto labeling
another object. All objects per image must be labeled in order to move onto the next image. This will ensure that all
of the coordinates for each classified object per image are present when processed.

Often times, each image will consist of several objects. Depending on the number of objects per image, manual
labeling could take up to five minutes or more if accurate segmentation is needed instead of a bounding box. The
greater the number of objects in an image, the more time it will take to complete the given task. Only objects in which
the human eye can classify as the given object were labeled. For example, if a car appears far away and merely looks
like noise then it will not be labeled as a car. This will ensure that the network identifies the given object while
minimizing the number of false positives. If two objects are overlapping, then the polygon will be drawn separately
around each given object. For example, if a person is leaning on a car, then the car will be labeled by drawing the
polygon around the person, essentially extracting a portion of the car the person appears in. One problem with manual
labeling is the inconsistency among different labelers. Failing to be consistent will risk the network misclassifying
objects, resulting in a poorly trained network.

2.4. Synthetic Image Generation and Automated Labeling
To generate large amounts of training data and maintain the accuracy and consistency of annotations, an automated
synthetic image generation and labeling process has been developed, as shown in Figure 6. A program was developed
to automatically spawn random person assets and random vehicle assets in multiple locations and capture images in
various angles.

In designing the generation of synthetic data, we focused on optimizing efficiency and to create images with
similarities to real data. The synthetic data would need to have automated annotations since the manual labeling
process is time consuming and inaccurate.

 (a) (b) (c)
Figure 5: (a) A small object has rough and jagged edges; (b) A Gaussian blur
filter is applied during the post-processing step to match the characteristic of

(c) real images.

As illustrated in Figure 6, the first step in our
synthetic data generation process is to create
the graphical environment script. Parameters
for setting up scenes are created and set in this
script. The terrain type, object and camera
distances, camera angles and locations, and
object assets are all selected and the automated
process begins. Multiple supporting images
are taken for each training image. Frames with
all objects of interest, no objects of interest,
visible camera filters, infrared camera filters,
and single objects of interest are taken for
training data and to perform background

subtractions later in the process. During the frame captures, the distances and labels of each object of interest are
saved. This is repeated until all the specified terrain types and camera angles are completed. After image capture is
completed, the automated process begins performing background subtractions for each individual object and generates
a contour used for annotations, as shown in Figure 7. Distance information about each object is used to produce
accurate object contours in situations where there are overlaps, giving objects closer to the camera higher priority. In
this case, the objects in front will have complete outlines, whereas the contours behind it will have a cut out of the
preceding objects.

Figure 7: Automatic labeling process: (a) a synthetic image; (b) automatic object detection using background
subtraction; (c) detection of contours and combining all objects.

The objects labels and contour coordinates are automatically saved in a ground truth file. Through this process,
hundreds or thousands of images can be created in minutes or hours, versus taking days or possibly weeks to collect
them in the real world. The relative cost of this process is negligible compared to the potential costs of having to
collect similar data in real life.

3. DNN TRAINING USING SYNTHETIC DATA

In this section, A DNN model was trained to test the effectiveness of the synthetic data as compared to real training
data.

3.1. Mask-RCNN Model
For comparison of training a DNN on real versus synthetic data, a DNN model, Mask Region-based Convolutional
Neural Network (Mask-RCNN) was used to identify and segment objects in images [17]. This network was used due
to its performance and ability to generate segmentation masks. In instance segmentation, a mask is generated around
each object along with a bounding box. From this approach, information on the location, pixel boundary, and quantities
of the objects can be obtained. To compare the performance of a network trained on real data versus a network trained
on synthetic data, we chose to limit the objects classes to people, cars, and truck while also limiting the environment
to the desert.

In this research, Detectron, Facebook’s implementation of Mask-RCNN [17] was used for training and testing
comparisons. Mask-RCNN extends on Faster-RCNN by adding an additional mask branch to the existing bounding
box branch. Mask-RCNN outputs a class label, bounding box, and mask for each object. Figure 8 shows the network

Figure 6: Flowchart demonstrating the step-by-step process of
generating synthetic training data.

 (a) (b) (c)

architecture of a Mask-RCNN which comprises of the convolutional backbone (CNN), region proposal network
(RPN), bounding box head, and mask head.

3.2. DNN Training Process
The Mask-RCNN training process starts with
passing an annotated image into the CNN to
create a feature map. The CNN used is ResNet-50
which has a bottleneck structure consisting of 5
stages. An image of 1024x1024x3 (RGB) is
converted into a feature map with a shape of
32x32x2048. Early layers in the backbone
extracts more general features (e.g. shapes and
edges) on the objects while later layers extract
more specific features (e.g. person). The
backbone also uses a feature pyramid network
(FPN) to improve representation of objects at
different scales. The feature map passes through
the lower layers to the higher layers and then
passes back to the lower layers, thus allowing the
feature extractor at each stage to have access to
higher and lower level features.

The feature map is then passed into the RPN where it finds areas that contain objects. The scanned regions are called
anchors and are assigned either foreground or background class. If the anchors overlap, the anchor with the highest
foreground confidence is kept. The RPN also refines the boundary boxes. When the RPN predictions are finished, the
network passes on the final proposals to the next stage.

The Faster-RCNN section then assigns a class to each Region-of-Interest (ROI). The ROI classifier removes ROIs
that were assigned the background class and assigns a specific class to ROIs with a foreground class. Also, the
boundary box regressor refines the location and size of the boundary boxes.

The Mask Head runs parallel with the boundary box head. Mask R-CNN takes the positive regions selected by the
ROI classifiers and creates a mask for each ROI. A low resolution, 28x28 pixel mask, is generated during training to
compute the loss but later rescaled during inference. The RoIAlign layer uses RoIPool, an operations that extract a
small feature map (7x7) from each ROI, to increase accuracy in predicting masks.

3.3. Testing Metric: Mean Average Precision
We chose to use mean average precision (mAP) to evaluate the performance of our trained network. AP is widely
used in objection detection datasets and competitions. The mAP is the average over all the classes’ AP and ranges
from a value of zero to one. While AP is calculated for each class, mAP is calculated for the entire dataset. This is
advantageous because we can compare different datasets by using mAP. Measuring AP is beneficial for improving
the network’s performance because if the AP values are low for specific classes, it can serve as an indicator that we
need to add more training sample or improve the quality of those classes. For our research, we only considered the
classes: person, car and truck. This AP value is calculated by taking the area under the precision-recall (PR) curve.
The PR is constructed based on the Intersection over Union (IoU):

𝐼𝑂𝑈 =
𝐴𝑟𝑒𝑎	𝑜𝑓	𝑂𝑣𝑒𝑟𝑙𝑎𝑝
𝐴𝑟𝑒𝑎	𝑜𝑓	𝑈𝑛𝑖𝑜𝑛

Predictions higher than the IoU (eg. >50%) would be counted as a true-positive (TP) while prediction lower than the
IoU threshold would be a false-negative (FP). Recall is defined as the proportion of true positive detections over the
total amount of objects, while precision is defined as the proportion of true positive detections over the total amount
of detections. Precision and recall are computed using the following equation:

Figure 8: Mask-RCNN architecture.

(1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 =
(𝑇𝑃)

(𝑇𝑃 + 𝐹𝑁)

As seen in Figure , any detection labeled “T” are considered TP and any detection labeled “F” are considered FP. As
more predictions are made, the precision decreases when the detection is a FP and recall increases when the detection
is a TP. The order of detection is arranged from highest confidence to lowest confidence. We then plot all of the
detections into a PR curve (blue curve). Instead of using the area under the blue curve, we considered a corrected PR
curve, where the max precision at a higher recall level replaces the precision at the current recall level. We use the
corrected curve to reduce the effects of fluctuations in the PR curve that are caused by small variations in ranking.
The AP value is the sum of the blue and red area under the curve. The area of the curve is computed by using the
following equations:

 𝐴𝑃 =	 ;
;;
∑ 𝐴𝑃==∈[@.@,..,;.@]

Where 𝑟 represents the recall levels and 𝐴𝑃= represents the 𝐴𝑃 at 𝑟.

𝐴𝑃 =	
1
11 E 𝑝FGHI=J(𝑟)

=∈[@.@,..,;.@]

𝑝FGHI=J(𝑟) = 𝑚𝑎𝑥=̃N=𝑝(𝑟̃)

Where 𝑃FGHI=J(𝑟) is the interpreted precision at r and is calculated by taking the precision value of the corrected
curve. The precision at 𝑟̃, the recall level of the local max precision, is used for 𝑝FGHI=J(𝑟).

Figure 9: Example of PR Curve [20] The AP value is calculated by summing the red and blue areas.

The AP values are commonly computed from an IoU range of 0.5 to 0.95. AP@(.5:.95] would be the average AP over
the 10 IoU levels where the IoU level starts at 0.5 and increases by a step size of .05. [20] In our analysis, we used
AP@(0.5) to compare our synthetic and real data.

3.4. Comparison of DNN Trained with Synthetic versus Real Data

The primary method for comparing the performance of real and synthetic datasets is based on retraining a baseline
weight with the new dataset. Three retraining sessions were performed for each dataset, and each trained weight was
tested against the standard test set. The average of the three scores was used to represent the dataset’s performance.
The baseline weights scored 0.591 AP on the test set, and any difference in this score after retraining with new data
would demonstrate increases or decreases in performance related to that dataset. Each retraining was configured the
same to provide uniform comparisons of dataset performance. The networks were trained on a single NVIDIA 1080TI

(4)

(5)

(6)

(2)

(3)

for ~30 minutes (iterations=2,000), with 1 image batch size, and train time bounding box and segmentation mask
augmentations at 600, 800, 1200 scale.

A test set composed of 109 real images was used as the standard to measure performance across DNN weights trained
with either real or synthetic data. The test set was manually annotated and focuses on aerial images taken by an RC
drone in desert and mountainous environments. The baseline network was pretrained with 118,000 real images from
the COCO 2014 dataset. These baseline weights achieved an average AP score of 0.591 on the 109 real image test set.
Additional real images and synthetic images were used to train on top of this baseline DNN weight. Both the real
image and synthetic image training were done using the same baseline weights and the same parameters each time.

Figure 10 shows the averaged AP scores on a set of real test
data from DNNs trained across different types of training
data. Each score is the average of three DNN weights trained
with identical parameters. (A) No retraining, baseline
weights from FAIR (Facebook AI Research)[10]; (B) 21

synthetic image dataset; (C) 42 synthetic image dataset; (D) 63 synthetic image dataset; (E) 84 synthetic image dataset;
(F) 105 synthetic image dataset; (G) 97 real image dataset; (H) 71 real image dataset; (I) 51 real image dataset. The
synthetic datasets are created by sequentially adding 21 new synthetic images to the previous synthetic set.

Figure 11 shows the improvement of testing accuracy of the DNN using increased training samples of the synthetic
training data. The three sets of real images were used for training and then tested against the standard 109 real image
test set. Real image set (G) contained 97 real images and scored an average 0.580 AP, real image set (H) contained 71
real images and scored an average of .562 AP, and real image set (I) contained 51 real images and scored an average
of 0.712 AP. All real datasets were based on similar desert and mountainous environments. The real datasets (G, H,
I) are separate from one another and only contain video frames exclusive to their sets. The real datasets G, H, I took
~6 hours in total to manually annotate, not including the time it took to gather the raw images. The synthetic set (I)
took ~2 hours in total to generate and annotate. The performance of a real dataset is difficult to predict even when
testing with similar environments and features. Real dataset (G) and (H) contain similar features to the test set and
real dataset (I), but did not perform well. Synthetic data is convenient and efficient when multiple variations of training
environments are needed. Drawbacks from low performing datasets such as wasted annotation time and data collection
are reduced when generating synthetic data versus real data.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Pretra
ined Se

t (A
)

Sy
nthetic

 Se
t 1

 (B
)

Sy
nthetic

 Se
t 2

 (C
)

Sy
nthetic

 Se
t 3

 (D
)

Sy
nthetic

 Se
t 4

 (E
)

Sy
nthetic

 Se
t 5

 (F
)

Real
Data

 Se
t 1

 (G
)

Real
Data

 Se
t 2

 (H
)

Real
Data

 Se
t 3

 (I)

(A
P)

 @
 Io

U
=0

.5
0

B

C

D

E

F

I

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0 50 100 150
(A

P)
 @

 Io
U

=0
.5

0
Training Samples

Figure 10: Averaged AP scores on a real data test set
from DNNs trained across different types of training
data. Each score is the average of three DNN weights
trained with identical parameters. (A) No retraining,

baseline weights from FAIR (Facebook AI
Research)[10]; (B) 21 synthetic image dataset; (C) 42

synthetic image dataset; (D) 63 synthetic image
dataset; (E) 84 synthetic image dataset; (F) 105

synthetic image dataset; (G) 97 real image dataset;
(H) 71 real image dataset; (I) 51 real image dataset.

The synthetic datasets are created by sequentially
adding 21 new synthetic images to the previous

synthetic set.

Figure 11: Comparison of AP scores versus number of
training samples. Averaged AP scores of DNNs

trained with synthetic sets tested on the standard 109
real image test set. (B) Synthetic Set 1; (C) Synthetic

Set 2; (D) Synthetic Set 3; (E) Synthetic Set 4; (F)
Synthetic Set 5; (I) Real Data Set 3.

The first synthetic set (B) contained 21 images and achieved a score of 0.628 AP, which shows an improvement above
the baseline weights and real data sets (G) and (H). Additional synthetic images were generated to provide more
features found in the test set. These synthetic sets were combined to create a larger training set. Features such as time
of day, brightness, weather, and number of vehicles and persons were adjusted in each iteration of synthetic data
generation. Compared to generating real data, the synthetic process is much easier, faster and less expensive in creating
many variations of an environment. The final synthetic data set (F), which combines synthetic data sets (B to E) and
adds 21 new images to a total of 105 synthetic images, achieved an average 0.728 AP.

3.5. Test Results Analysis

Figure 12 shows a couple of test results of a DNN trained by a set of synthetic data (Synthetic Set F). The test images
are real images taken from drone views of desert areas. Figure 12(a) shows the DNN outputs. We can see detection
of person and car in Figure 12 (b) with zoom in views. The confidence levels are quite high, from 80% - 100%.
Figure 12(c) shows the ground truth images.

 (a) (b) (c)

Figure 12: DNN Identification and segmentation results using Synthetic Set F as training data. (a) DNN outputs; (b) zoom
in regions of identifications; (c) ground truth images.

The limitations of collecting real data highlights the benefits of using synthetic data. The limits of synthetic data are
based upon the quality and realism offered by the 3D graphical engine, but basic synthetic images generated using
transformations have shown similar performance in training DNNs compared to training with real images [11].
Comparing real and synthetic data with a similar amount of training images, real data outperforms synthetic data when
looking at real data set (I) with 51 images at 0.712 AP score, compared to synthetic data set (D) with 63 images at
0.675 AP score. However, synthetic data can be easily increased and variations of features can be added with minimal
cost and human input. This situation is demonstrated with synthetic dataset (F) with 105 images at 0.728 AP,
outperforming real dataset (I) with 51 images at 0.712 AP.

Synthetic data was generated to match the environments found in the real data. Parameters such as vehicle colors,
vehicle models, person clothing, weather, environment, camera angle, camera distance and number of objects were
altered to provide a variety of training data. Synthetic Set A with 21 images demonstrated an improvement in AP score
over the base weights, scoring 0.628 AP compared to 0.591 AP. New synthetic data sets were added on top of the
previous synthetic set to create the next iteration of training data. Adding 21 synthetic images to Synthetic Set A
improved the performance to 0.647 AP. Building on Synthetic Set B, another set of images were added to create
Synthetic Set C which scored 0.675 AP. Synthetic Set D was created by combining another set of images to Synthetic
Set C and this dataset improved the performance to 0.696 AP. The final Synthetic Set E, which includes Synthetic Set
A to Synthetic Set D, and an additional 21 synthetic images, scored 0.728 AP. This synthetic set (0.728 AP) performed
better than the real data set (0.712 AP) of 51 real images with around double the amount of synthetic training images.

4. CONCLUSIONS

Retraining deep neural networks for object segmentation using synthetic images is efficient and performs similar or
better than training with real data. In situations where real data collection is difficult to impossible, synthetic data
generation provides a useful solution for increasing training data and automatic annotations. Our 105 synthetic image
dataset achieved a 0.728 AP score compared to the 51 real image dataset with 0.712 AP score on the test set. This
result shows that with the right application of graphical environments, synthetic data can be effectively applied in
training deep neural networks.

ACKNOWLEDGEMENTS

The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of
Technology under a contract with the National Aeronautics and Space Administration (NASA).

REFERENCES

[1] “The PASCAL Visual Object Classes Challenge 2012 (VOC2012).” [Online]. Available:
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/ (2012).

[2] Dollar, P., Wojek, C., Schiele, B., Perona, P., "Pedestrian detection: An evaluation of the state of the art."
PAMI 34, (2012).

[3] Lin,T-Y, Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar, P., and Zitnick, C. L., "Microsoft
COCO: Common Objects in Context," D. Fleet et al. (Eds.): ECCV 2014, Part V, LNCS 8693, pp. 740–755,
(2014).

[4] Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L., "ImageNet: A Large-Scale Hierarchical Image
Database," CVPR, (2009)

[5] Patki, N., Wedge, R., and Veeramachaneni, K., "The Synthetic Data Vault," 2016 IEEE 3rd International
Conference on Data Science and Advanced Analytics (DSAA), Montreal, QC, pp. 399-410, (2016).

[6] Tremblay, J., et al., “Training Deep Networks with Synthetic Data: Bridging the Reality Gap by Domain
Randomization,” Apr. (2018).

[7] Gong, Z., et al. “Diversity in Machine Learning.” CoRR abs/1807.01477, (2018).
[8] Domingos, P., “A Few Useful Things to Know about Machine Learning.” Communications of the ACM

55(10): 78–87, (2012).
 [9] Prakash, A., et al., “Structured Domain Randomization: Bridging the Reality Gap by Context-Aware Synthetic

Data,” arXiv:1810.10093 [cs], (2018).
[10] “https://arma3.com,” Arma 3. [Online]. Available: https://arma3.com.
 [11] “https://steamcommunity.com/app/107410/workshop/,” Arma 3. [Online]. Available:

https://store.steampowered.com.
[12] “https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/Functions/Reference/Texturing,” Unreal

Engine. [Online]. Available: https://unrealengine.com.
[13] “https://docs.unity3d.com/Manual/ScriptingSection.html,” Unity3D. [Online]. Available: https://unity.com.
[14] Roh, Yuji, Heo, Geon and Whang, Steven Euijong, "A Survey on Data Collection for Machine Learning: a Big

Data-AI Integration Perspective." arXiv preprint arXiv:1811.03402, (2018).
[15] “https://docs.unity3d.com/Manual/UnityAnalyticsDashboardRDE.html,” Unity3D. [Online]. Available:

https://unity.com.
 [16] Mahendran, A., Bilen, H., Henriques, J. F., and Vedaldi, A., “ResearchDoom and CocoDoom: Learning

Computer Vision with Games,” arXiv:1610.02431 [cs], (2016).
 [17] He, K., Gkioxari, G., Dollár, P., and Girshick, R., “Mask R-CNN,” arXiv:1703.06870 [cs], (2017).
 [18] Oksuz, K., Cam, B. C., Akbas, E., and Kalkan, S., “Localization Recall Precision (LRP): A New Performance

Metric for Object Detection,” arXiv:1807.01696 [cs], (2018).
[19] Hui, J., “mAP (mean Average Precision) for Object Detection,” Jonathan Hui, (2018) .
[20] Henderson P., and Ferrari, V., “End-to-end training of object class detectors for mean average precision,”

arXiv:1607.03476 [cs], (2016).

[21] Girshick, R., Radosavovic, I., Gkioxari, G., Doll, P., and He, K., "FAIR’s research platform for object
detection research, implementing popular algorithms like Mask R-CNN and RetinaNet,"
facebookresearch/Detectron. Facebook Research, (2019).

[22] Payumo, K., Huyen, A., Seguin, L., Lu, T., Chow, E., and Torres, G., “Augmented reality data generation for
training deep learning neural network,” in Pattern Recognition and Tracking XXIX, vol. 10649, (2018).

 [23] Lu, T., Huyen, A., Payumo, K., Chow, E., Torres, G., “Deep neural network for precision multi-band infrared
image segmentation,” (Invited Paper), SPIE Proc. Vol. 10649, No. 3, (2018).

