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ABSTRACT  

Infrared (IR) images are essential to improve the visibility of dark or camouflaged objects. Object recognition and 

segmentation based on a neural network using IR images provide more accuracy and insight than color visible images. 

But the bottleneck is the amount of relevant IR images for training. It is difficult to collect real-world IR images for 

special purposes, including space exploration, military and fire-fighting applications. To solve this problem, we created 

color visible and IR images using a Unity-based 3D game editor. These synthetically generated color visible and IR 

images were used to train cycle consistent adversarial networks (CycleGAN) to convert visible images to IR images. 

CycleGAN has the advantage that it does not require precisely matching visible and IR pairs for transformation training. 

In this study, we discovered that additional synthetic data can help improve CycleGAN performance. Neural network 

training using real data (N = 20) performed more accurate transformations than training using real (N = 10) and synthetic 

(N = 10) data combinations. The result indicates that the synthetic data cannot exceed the quality of the real data. Neural 

network training using real (N = 10) and synthetic (N = 100) data combinations showed almost the same performance as 

training using real data (N = 20). At least 10 times more synthetic data than real data is required to achieve the same 

performance. In summary, CycleGAN is used with synthetic data to improve the IR image conversion performance of 

visible images. 
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1. INTRODUCTION  

Infrared (IR) images are essential for improving the visibility of objects. For example, using an infrared camera in the 

dark can improve the sight of a firefighter and reduce the risk of slipping, travel, and falling 1,2. In our previous study, as 

part of the Assistant for Understanding Data through Reasoning, Extraction, and sYnthesis (AUDREY) project 

supported by the Department of Homeland Security (DHS) 3,4, we provided an enhanced vision using deep learning-

based image transformation from visible to IR images 5–7. We found that object recognition and segmentation based on 

the neural network using IR images were more accurate and insightful than color visible images. 

However, the bottleneck is the amount of relevant IR images needed for training. Collecting real IR images for 

special purposes, including space exploration, military, and fire-fighting applications, is a challenge 5,6. Simple data 

augmentation techniques (flipping, translating, and rotating) helped improve the classification accuracy of the 

convolutional neural network when there was a lack of relevant data in the remote sensing scene classification 8. Other 

previous studies showed that data augmentation helped generate the most accurate results in classifying urban areas 

using polarimetric synthetic aperture radar data 9. Data augmentation also addresses the overfitting problem in machine 

learning 10. 

Previous studies showed that simple data augmentation can be beneficial by modifying the real data (such as 

flipping, translating, and rotating the image) while maintaining object categories for object recognition 11. However, the 

real data itself is fundamentally limited. If the real data does not vary sufficiently, it means that data augmentation may 

not be helpful. Then we need to consider sophisticated data augmentation such as synthetic data generation. The recent 

maturation of 3D game engines and computer physics engines enables realistic synthetic images to be generated. Here 

we simulated the background and target using a 3D game engine. In this paper, we compared the performance of simple 

data augmentation and synthetic data generation in the problem of visible to IR image transformation. 

 



 

 
 

 

2. SYNTHETIC DATA GENERATION  

We created color visible and IR images using the 3D game editor ARMA3 (Bohemia Interactive, Amsterdam, The 

Netherlands). ARMA3 is an open, realism-based, military tactical video game that delivers realistic synthetic image 

generation. ARMA3 is based on Real Virtuality 4 3D engine. ARMA3 uses NVIDIA PhysX, an open source real-time 

physics engine middleware SDK, to enable real-world simulations of vehicles, land, sea and air. We developed a script 

to work with ARMA3, which spawns random people and vehicles at random locations in a specified location and 

imports images from multiple angles in a given 3D environment. We can also specify the motion and behavior of the 

object. For example, a person can walk down a street or direct a truck to run on a specified route. Through this process, 

we created hundreds of high-quality images in a matter of hours. In reality, it can take days or weeks to take images in 

the real world. The relative cost of this synthetic data generation process is negligible compared to the potential cost of 

collecting similar data in real life. 

We further processed the synthetic image using a selective Gaussian blur filter with a blur radius of 5 pixels and 

a maximum delta of 50. The maximum delta is the maximum difference between the pixel value and the surrounding 

pixel value (value between 0-255). Those pixels with values higher than this max delta value are not blurred (Figure 1).  

For pairs of real-visible images and IR images, we used an open-source visible and infrared camouflage video 

database provided by the Signal Multimedia and Telecommunications Laboratory at the Federal University of Rio de 

Janeiro 12(http://www02.smt.ufrj.br/~fusion/). 

 

 

Figure 1. Representative camouflage dataset images of (A) real visible-light, (B) real IR, (C) synthetic visible-light, (D) 

synthetic IR images.  

 

We also used another dataset that include parking lot surveillance images that contain the visible-light/IR pairs provided 

by the Army Research Laboratory. The synthetic dataset mimics the situation at various spatial perspectives, different 

times of the day, and background (Figure 2). In these various situations, creating an actual image can be costly and time-

consuming. With a 3D game engine, however, it takes no more than 20 seconds to create a high-quality synthetic image. 

With synthetic data, we can pinpoint the exact location of each object (such as a person, car, etc.) based on 3D 

model information, and place them in any position. We can also shuffle the background and the target to create an 

infinite combination of synthetic data. For target recognition and segmentation purposes, objects are already fully 

annotated in the 3D model and do not require manual labeling. In particular, manual labeling for segmentation requires a 

great deal of time and resources when using real images. Manual labeling by humans may interfere with successful 

training of neural networks by creating inconsistent ground truth data sets between the labels. The synthetic data solves 

all of these problems. 
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Figure 2. Representative parking-lot synthetic dataset images of (A) direct overhead view, (B) angled overhead view, (C) 

close distance view, (D) long distance view, (E) rural background view, (F) night time view.  

 

3. ADVERSARIAL NETWORKS  

We used generative adversarial networks to train associations between various camouflage and parking-lot images of 

visible-light and IR counterparts. Generative adversarial networks learn the loss of classifying whether the output image 

is real, while at the same time the networks learn the generative model to minimize this loss 13. To train the generative 

adversarial networks, the objective is to solve the min-max game, finding the minimum over θg, or the parameters of our 

generator network G and maximum over θd, or the parameters of our discriminator network D.  

 

                           (1) 

 

The first term in the objective function (1) is the likelihood, or expectation, of the real data being real from the data 

distribution Pdata. The log D(y) is the discriminator output for real data y. If y is real, D(y) is 1 and log D(y) is 0, which 

becomes the maximum. The second term is the expectation of z drawn from P(z), meaning the random data input for our 

generator network (Figure 1). D(G(z)) is the output of our discriminator for generated fake data G(z). If G(z) is close to 

real, D(G(z)) is close to 1, and the log (1-D(G(z))) becomes very small (minimized).  

 

                   (2) 

 

        (3) 

 

We used the random input variable z as input to the generator network. An image can be used as input to the generator 

network instead of z. In the objective function (2), x, the real input image was a conditional term for our generator. We 

then added a conditional term x to our discriminator network, as in function (3). The conditional adversarial networks 

learned the loss function 14,15 and the mapping from the input image to the output image.  



 

 
 

 

While the original generative adversarial networks generate the real-looking image from the random noise input 

z, the conditional generative adversarial networks (CGAN) can find the association of the two images (i.e., visible-light 

and IR). CGAN then converts or reconstructs the real input image into another image. CGAN’s one challenge is training 

data in that they require spatially and temporally matching image pairs for training. The two image spaces have to be 

closely interrelated. This can be time consuming or even impossible to translate, depending on the two image types. In 

our case, the visible light and the infrared cameras were not exactly synchronized in time and space. This is where cycle 

consistent adversarial networks (CycleGAN) is favorable. 

With CycleGAN, we can use the deep neural network model to transform between two discrete, unpaired 

images. They need not be precisely synchronized spatially nor temporally. In order to determine how well the entire 

translation system performs, CycleGAN introduced two generators (a generator that converts visible-light to IR images, 

and another generator to convert back from IR to visible-light images). This approach allows CycleGAN to be 

simultaneously trained in a bidirectional transformation to balance the variability and consistency between training 

images, resulting in a better translation between unpaired images 16. 

Our goal is to translate the captured image in the visible spectrum to the same image captured by the IR 

wavelength, while at the same time maintaining the structural similarity of the input and output images. We used the U-

Net architecture 17 for a progressively downsampled and upsampled encoder-decoder network-based generator for 

efficiency. We then applied skip layers on the network. That is, each downsampling layer is sent to and coupled to a 

corresponding upsampling layer. Finally, the upsampling layer can directly learn important structural features in the 

downsampling layer. For CycleGAN, we used ResNet-based generators to generate high-quality images 16. 

In terms of training, all weights were randomly initialized using a Gaussian distribution with mean 0 and 

standard deviation 0.02. The weight of the discriminator was updated via stochastic gradient descent. Then, the weights 

of the generators were updated according to the difference between the generated image and the input ground truth. The 

discriminator and generator ran alternately until convergence or a pre-specified number of epochs passed (epoch = 

10,000). 

 

4. TRAINING AND TESTING  

 

Figure 3. Transforming real visible-light images to IR images. (A) Real visible-light image, (B) transformed IR images 

trained by 10 real images, (C) transformed IR image trained by 10 real and 100 synthetic images. By adding 100 synthetic 

images for neural network training, the transformation performance improved compared to only 10 real images used for 

training. Synthetic data helps improve neural network performance. 

 

We found that additional synthetic data helps improve image transformation performance (Figure 3). Neural network 

training using real data (N = 20) performed more accurate transformations than training using real (N = 10) and synthetic 

(N = 10) data combinations. Neural network training using real (N = 10) and synthetic (N = 100) data combinations 

showed almost the same performance as training using real data (N = 20). We used generator L1 loss, which is the 

difference between generator output and ground truth, as a performance measure (Figure 4). 

 



 

 
 

 

 
Figure 4. Neural network performance of various data sets. Additional synthetic data helped to improve cycle consistent 

adversarial network (CycleGAN) performance. Deep neural network training using real data (N = 20) was twice as accurate 

as training using real (N = 10) and synthetic (N = 10) data combinations. The result indicates that the synthetic data cannot 

exceed the quality of the real data. The neural network training using real (N = 10) and synthetic (N = 100) data showed 

almost the same performance as training using real (N = 20) data. This means that more than 10 times as much synthetic 

data as the real data is required to achieve the same performance. 

 

 

Figure 5. Transformation results of visible-light and IR images. (A) Testing results in same day and same location, (B) 

testing results in different day and same location, (C) Testing results in different day and different location using real dataset 

(N=149) and, using combination of real (N=149) and synthetic (N=198) dataset.  

 

A total of 149 real visible-light and IR image pairs in the parking data set were used for training. With limited training 

data, image transformation was performed relatively well (L1 loss: 3.29%) in a test environment that was consistent with 

the training environment (same time of a day and same camera perspective). However, the system failed to generalize 

and yielded poor results in other environments (L1 loss: 12.8%) (Figure 5). Combining the real data with the synthetic 

dataset (N = 198) improved the test results for the different day (Figure 5B), and for the different day and locations 



 

 
 

 

(Figure 5C), compared to the real image data set. Including synthetic data in the same location on the same day dataset 

increased L1 loss (Figure 5A). This is because the original real data is overfitted for a particular situation (the same 

location with the same day). Because synthetic data sets include more diverse environments in terms of time and space 

in images, training with synthetic data achieved higher performance in a more generalized environment than training 

with only real data. 

 

 
Figure 6. Transformation performance of visible-light and IR images in various conditions. In different day and different 

location conditions, the L1 loss decreased as we added more synthetic images. In the same day condition, the L1 loss 

increased as we added more synthetic images that were irrelevant to the purpose of training.  

 

5. DISCUSSION 

We showed that visible-light images could be transformed to IR images using CycleGAN, and conversion results with 

limited data sets could be enhanced by adding synthetic data generation based on the 3D game engine. We also found 

that the amount of synthetic data depends on the quality of the data, but we need at least 10 times more synthetic data 

than real data to achieve the same performance. Also, if the synthetic data is not relevant to the purpose of the training, 

the test results may be degraded. 

This study used very small data sets, and the generated synthetic data was not very large. Larger synthetic data 

generation is required for the future research. In a previous 3D pose estimation study, the authors synthesized 2 million 

images for training to improve performance 18. Another previous study used data augmentation with manual features 

(input from experts) to obtain a higher accuracy than the clinical diagnostics in detecting mammographic lesions using a 

total of 45,000 images 19. In the medical field, especially large data sets have been used, achieving unprecedented 

accuracy, which is much higher than the clinical diagnostics 20,21.  

We only generated synthetic data using a 3D game engine, and did not perform simple data augmentation 

techniques, such as flipping, rotating, and zooming in/out. The combination of synthetic data generation and data 

augmentation may provide more variability in the data set, enabling higher accuracy. Another idea is to change the 

image style and create a synthetic image using generative adversarial networks. A previous study showed the 

improvement of classification accuracy by using style transfer with traditional data augmentation 22. Due to lack of data, 

generalization was not often done. Data augmentation is known to lead to network regularization and improved test 

accuracy 23. 

In our study, we trained the network from the beginning. The transformation of visible and IR images is a new 

area that may not be able to benefit from transfer learning (reusing pre-trained models for new problems). However, 



 

 
 

 

many previous studies found that deep neural networks could learn transferable features which generalize well to novel 

tasks 24. For example, the first three convolutional layers of a pre-trained network can be delivered as a whole to new 

problems. The next three layers can be transferred and fine-tuned for adaptation. We will benefit from the next version 

of IR image transformation from visible light through transfer learning, large scale synthetic data generation as well as 

data augmentation. 
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