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Challenge- How to Address Execution Uncertainty 
Given Non-zero Runtime Scheduler
• Reality (execution) consistently differs from our scheduling models

• Activities may use fewer resources (time, energy, data volume) than expected 
• Activities may use more resources then expected, risking failure to perform all tasks
• We consider effects of changes in specifically activity duration 

• Energy and data volume modeled as rates so they are implicitly affected 

• Can respond to changes in activity duration by
• 1) rescheduling to incorporate execution feedback
• 2) allow generated schedule to adapt to changes during execution (Flexible Execution)

• The scheduler takes non-zero time to (re) schedule
• Activities could start executing while the scheduler is running.
• New changes may occur while the scheduler is running.
• Scheduler runtime (Tsc) cannot be predicted exactly (non-determinism). 
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Goals and Assumptions

• Goal of scheduler
• 1) schedule all activities
• 2) schedule activities such that schedule has shortest possible makespan-

difference between latest time an activity is scheduled to end and earliest 
time an activity is scheduled to start

• Assumptions
• All activities fit in the initial schedule (the schedule is not oversubscribed).
• Schedule activities form an approximately single serial path (only minor 

parallelism)
• Focus on the M2020 Onboard Scheduler (Rabideau and Benowitz 2017)



Non-zero runtime scheduler
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4Problem- What to execute while scheduler is running?



Commit Window Approach
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• Activities that are scheduled to start during the commit window are committed to execution and cannot be rescheduled.
• Activities that are not scheduled to start during the commit window cannot be rescheduled to start in the commit 

window.



Framework for Analysis:
Scheduler Runtime Loss and Scheduler Invocation Loss

• Must quantify effectiveness of rescheduling and Flexible Execution 
techniques
• Quantify how techniques are able to reduce makespan by reducing 

losses: Scheduler runtime loss and scheduler invocation loss
• Scheduler runtime loss- the time that the scheduler is unable to 

recoup while the scheduler is predicted to be running
• Scheduler invocation loss- time lost due to waiting to reinvoke the 

scheduler.

6



Scheduler
Runtime

Loss

A B

Scheduler 
Invocation 

Loss

Activity 
Ends Early

Scheduler is 
scheduled to 

invoke again at 
this time (T1)

Scheduler 
finishes

The dotted represents
the earliest time the 

scheduler can place B.

Scheduler is 
invoked at this 

time

A

now

Commit Window

7

Scheduler Runtime Loss and Scheduler Invocation Loss



Fixed Cadence Scheduling
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• We assume that scheduler runtime (Tsc) = commit window.
• Cdn >= Tsc to ensure that the scheduler finishes before the scheduler is scheduled to invoke again.

• For now, Cdn = Tsc.

• Large scheduler invocation loss and scheduler runtime loss  



Event Driven Scheduling
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• Invoke the scheduler only when an event occurs.
• An activity ends by more than Δ minutes

• Scheduler Invocation Loss is mostly removed from Total Loss when the activity 
triggers Event Driven Scheduling.
• If an activity ends by less than Δ minutes, it is considered scheduler invocation loss

• There will likely be fewer overall calls to the scheduler.
• Fewer overall calls to the scheduler means more CPU can be allocated to the scheduler without 

starving lower priority CPU tasks

• Scheduler will not be reinvoked if event occurs while scheduler is running
• Solving Transition Independent Decentralized Markov Decision Processes. (Becker, et. al. 2004) 

• Back to back invocations could risk overconsumption of CPU
• à Maximum reschedule limit

• No events result in scheduler never invoking
• àMax time between rescheduling
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Event Driven Scheduling



Flexible Execution (FE)

• Problem - previous methods are limited in response time by scheduler run 
time (Tsc) = commit window size
• Takes limited advantage of activities ending early and does not significantly handle 

activities running long
• FE provides ability to change start times of activities in commit window
• Separate from scheduler and runs at faster frequency
• Prior work 

• Remote Agent Experiment (Muscettola et al. 1998; Pell et al. 1997, Muscettola 2002)
• IDEA: Planning at the Core of Autonomous Reactive Agents (Gregory et al. 2002)
• CASPER (Chien et al. 2000; Knight et al. 2001)
• Generating Robust Schedules Through Temporal Flexibility (Policella et al. 2004)
• Solve-and-Robustify (Policella et al. 2009)
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Flexible Execution (FE) cont.

• Dispatch Window- Fixed amount of time after Now
• Fe is only able to modify start times of activities within dispatch window

• Predecessor-Successor Relationship
• Relative ordering between activities that share the same unit resources or share 

dependencies 
• E.g) A must complete successfully before B starts à A is a predecessor of B and B is successor 

of A
• FE allows execution according to a directed acyclic graph based on predecessor-

successor relationships of activities in dispatch window
• Called at a frequency of 1 Hz

• Two variations of FE algorithm 
• 1) Extended Veto 
• 2) Extended Push
• Both perform same when activities end early; behavior differs when activities run late
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B

FE- Scheduler Ends Early
• FE can take advantage of the scheduler taking less time than predicted to run
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FE- Activity Ends Early 
• FE can pull successor activities forward if predecessor ends early by less than event threshold

B
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B

Activity Ends Late- FE Extended Veto

• If activity is pushed beyond some limit, L, it will be vetoed
• If activity being pushed exceeds start time of another scheduled activity, it will be vetoed 

C
B
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• Activities continue to be pushed if a predecessor runs late (ripple push)

C
B

Activity Ends Late- FE Extended Push



Complications with Flexible Execution

• Changes in non-depletable resources (power)  or depletable resources 
(energy/data volume) do not cause activities to start earlier or later
• Allowed to run while scheduler is scheduling à actual execution may be 

different between when scheduler started running and when it ended à
inconsistent schedule
• If activity runs long, activity can be pushed outside of commit windowà

possible that activity will not be scheduled in current invocation
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Empirical Results- Inputs
• Use Sol Types 

• Sol Types- currently best available data on expected M2020 rover operations
• Not always completely serial, contain execution, dependency constraints, and setup 

activities (e.g. preheats)
• Each sol type contains 20-40 activities
• Each sol type has a different objective (e.g. driving, more drilling, etc.)

• Medium Drive, Short Drive, Abraded Proximity Science, Natural Proximity Science, 
Workspace

• 40 runs of simulation of execution on each of 8 sol types for each scheduling method per 
independent variable value
• Mars 2020 surrogate scheduler- an implementation of same algorithm as Mars 2020 

onboard scheduler but intended for a Linux workstation environment
• Activity durations are varied in each run based on probabilistic model using data from the 

Mars Science Laboratory (MSL) Mission
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Model to Vary Activity Durations

• Data from Mars Science Laboratory Mission 
(Gaines et al. 2016) indicates activities 
completed on average 28% early

• Use normal distribution to determine activity 
execution durations
• Mean- 72% of nominal activity durations 
• Stdev determines percentage of activities that will 

take longer than predicted duration
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• Commit window = predicted scheduler runtime 
dispatch window 

• Activities only end earlier than expected
• Scheduler always takes predicted runtime

• Makespan: difference between the latest time 
an activity is scheduled to end and the earliest 
time an activity is scheduled to start

• Makespan gain: difference between the 
makespan of the initial schedule and the final 
executed schedule.

• Lowest Curve: Fixed Cadence, Fixed Cadence 
with Extended Push FE, Fixed Cadence with 
Extended Veto (FE does not help with Fixed 
Cadence and if scheduler never ends early, 
cadence = Tsc_p)

• Middle Curve: Event Driven with no FE
• Highest Curve: Event Driven with either FE

Makespan Gain vs Predicted Scheduler Runtime



• Commit window = predicted scheduler runtime 
= dispatch window 

• Activities only end earlier than expected

• Scheduler can take less time than expected
• Scheduler runtime determined via pseudo 

normal distribution where value is truncated if 
scheduler runtime is greater than Tsc_p

• Lowest Curve: Fixed Cadence, Event Driven
• Middle Curve: Fixed Cadence with either FE
• Highest Curve: Event Driven with either FE

Makespan Gain vs Actual Scheduler Runtime (as a Fraction of 
Predicted Scheduler Runtime)



• Commit window = predicted scheduler runtime 
(Tsc_p) = dispatch window 

• Scheduler takes as much time as expected to run
• Activities run late by varying amounts

• Event Driven with FE extended push then FE with 
extended veto perform best (fewest number of 
activities dropped)

• Highest Curve: Event Driven with FE Extended Push

Percent of Activities Executed vs Percent of Activities that Ran Long



• The Predicted Scheduler Runtime, Tsc p = 60 seconds
• On average, 5 percent of activities take longer than expected
• On average, activities take 72 percent of their original duration 
• On average the scheduler takes half the predicted time to run. That is, Tsc_a (actual) = 0.5 × Tsc_p (predicted)
• Event Driven with extended push then extended veto perform best in terms of both number of activities executed and makespan gain

Results with Most Realistic Parameters



• An accurate model should result in:
• Theoretical Makespan Gain = Actual Makespan Gain + 

Scheduler Runtime Loss + Scheduler Invocation Loss
• Theoretical makespan gain is makespan gain using an 

instantaneous scheduler (0 sec commit window)
• Our model is inaccurate for following reasons:

• 1) Execution Time Constraints
• Any time before the earliest time an activity is 

allowed to start cannot be gained back
• 2) Setup Activities 

• Activities may require setup activities such as 
preheats and are not allowed to start before such 
setup activities complete

• 3) Parallelism
• There may be activities not in critical path in a 

non-serial schedule
• No matter how early they finish, they do not 

affect makespan

Analysis of Computational Model for Loss



• Scheduler runtime loss: time that the scheduler is 
unable to recoup while the scheduler is predicted 
to be running

• Scheduler invocation loss: time lost due to waiting 
to reinvoke the scheduler 

• Event Driven Scheduling, shown in Figure 16c, 
decreases the scheduler invocation and scheduler 
runtime loss compared to using Fixed Cadence 
Scheduling

• FE with Event Driven Scheduling, shown in Figure 
16d further reduces the scheduler invocation loss 
and results in the highest makespan gain. The 
scheduler runtime loss increases slightly (FE may 
pull activities earlier and trigger events which 
would not have occurred otherwise)

• Theoretically, makespan gain + scheduler runtime 
loss + scheduler invocation loss = makespan gain 
with 0 sec commit window
• Not true because of 1) exec. time constraint, 

2) preheats/setup, 3) parallelism
• Execution time constraints contribute most to 

model inaccuracy

Results- Analysis of Computational Model for Loss



Future Work

• Objective Function – We focused on Makespan, but the goal is to maximize 
some utility function over executed activities.
• May be range of activities in preference order 

• Execute most preferred activity if it does not cause any future activity to fail
• Scheduling at a preferred time rather than earliest
• Include energy/data volume in utility function

• Ensure scheduler isn’t invoked too frequently (overconsumption of CPU) or 
infrequently (stale schedule)
• Hybrid method- scheduler is invoked at least once every x minutes
• Minimum time delay between invocations

• Better Runtime Model – Our simple probabilistic model varies only durations. 
Many other variables can be adjusted to more accurately depict runtime 
variations
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Conclusion

• Event Driven scheduling outperforms Fixed Cadence scheduling in terms of 
decreasing loss
• Event Driven scheduling greatly decreases scheduler invocation loss
• FE decreases loss, and is more effective with higher scheduler runtimes
• Event Driven Scheduling with Extended Push results in highest average 

percentage of activities executed when activities take longer than expected
• If activities do not run long, Event Driven scheduling with either FE method 

results in highest makespan gain over varying values for predicted scheduler 
runtime
• For our specific inputs, execution time constraints, setup activities, and 

parallelism contribute to the imperfection of our computational model for loss 
and removing these factors from inputs results in an accurate model
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