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ABSTRACT

We present a flexible methodology to identify forest loss in
synthetic aperture radar (SAR) L-band ALOS/PALSAR im-
ages. Instead of single pixel analysis, we generate spatial
segments (i.e., superpixels) based on local image statistics to
track homogeneous patches of forest across a time-series of
ALOS/PALSAR images. Forest loss detection is performed
with Support Vector Machines (SVMs)trained on local radar
backscatter features derived within superpixels. This method
is applied to time-series of ALOS-1 and ALOS-2 radar im-
ages over a boreal forest within the Laurentides Wildlife Re-
serve in Québec. We evaluate four spatial arrangements in-
cluding 1) single pixels, 2) square grid cells, 3) superpixels
based on segmentation of the radar images, and 4) superix-
els derived from ancillary optical imagery (e.g. Landsat).
Detection of forest loss with superpixels outperform single
pixel and regular grid methods, especially when superpixels
are generated from ancillary optical imagery. Results are val-
idated with official Québec forestry data and Hansen forest
loss products. Our results indicate that this approach may be
applied operationally to monitor forests across large study ar-
eas with L-band radar instruments such as ALOS/PALSAR.

Index Terms— Change Detection; Forest Disturbance;
PALSAR; L-band SAR; Microwave Remote Sensing

1. INTRODUCTION

Tracking forest disturbance is an important part of carbon
monitoring and ecological modeling. L-band images have
been shown to be a valuable data source for forest monitor-
ing [1]. There is continued interest in L-band land cover and
land use change analysis with the current ALOS-2 and SAO-
COM missions, and the forthcoming ALOS-3 NISAR mis-
sions, which will provide high temporal and spatial resolution
imagery. An important NISAR objective is to monitor forest
disturbances at the 1 ha scale [2].

We present a methodology for detecting forest disturbance
from L-band SAR time-series. Given a time-series of images
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(i.e., image stack), our method identifies when and where for-
est disturbance occurred. In determining when a change oc-
curred, we consider a small window of images around a par-
ticular date and extract a temporally averaged pair. Using this
pair, we apply a two-part change detection method. First, with
a segmentation of our image, we derive backscatter features.
Then, we use use a classifier to determine if a segment lost
forest.

In this work, we consider a simple pair of features: the ini-
tial backscatter and the backscatter change. It is well known
that a decrease in HV backscatter may indicate forest loss [1].
We use linear 7 in our methodology and aggregate segment
statistics in these units.

Superpixel segmentation has become an increasingly im-
portant tool for change detection [1]. For our segmentation
procedure, we employ the superpixel methodology of [3]. We
use the mean backscatter within a segment to characterize a
superpixel as a proxy for individual pixel backscatter. Super-
pixel analysis speeds up processing as there are less super-
pixels to analyze than pixels. Further, superpixel segments
track changes at a larger spatial scale than individual pixels.
We evaluate 4 different local spatial contexts or shapes in our
change analysis: specifically, we evaluate superpixels derived
from backscatter, superpixels derived from optical products,
square cells derived from a regular grid, and individual pix-
els. As we show in Section 3, superpixels are better suited
to track image changes than segments generated by a square
grid of comparable size as well as individual pixel analysis.
Moreover, we find that superpixels derived from ancillary op-
tical products may improve our change analysis further.

Once feature vectors have been extracted, we need a clas-
sifier to determine if change has occurred. One can directly
apply an unsupervised classifier as in [4], a statistical test as
in [5] or apply a Markov Random Field to further incorporate
spatial relationships [6]. We take a supervised approach and
train an SVM similar to [7].

2. METHODOLOGY

In this section, we describe our methodology for change de-
tection on SAR image stacks to identify forest loss. First, we
discuss the preprocessing of an image stack. Then, we discuss
our change detection methodology.
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Fig. 1: The Laurentides Wildlife Reserve (shown with the
purple line), and the ALOS-1 tile used as the dataset for this
study (shown in teal).

Preprocessing our image stack is crucial to mitigate envi-
ronmental and phenological effects. In this work, we consider
two different stacks: HV ALOS-1 image tiles radiometrically
corrected for terrain (i.e. RTC corrected) by the ASF [8] and
HV ALOS-2 image tiles RTC processed with [9]. We select
images acquired from June through September during peak
biomass and to avoid snow cover.

Once we have a set of RTC images, we project all the im-
ages into the same coordinate reference and remove no data
pixels consistently. With a spatially coregistered and correctly
masked stack, we perform channel by channel preprocess-
ing. First, we clip the dynamic range of our HV image to
fall between -30 and -5 dB. Then, we apply total variation
(TV) denoising [10] in dB to remove noise. Although SAR
noise in dB is additive and ~y-distributed [11], we empirically
found that TV denoising works well, which assumes noise is
Gaussian. We used weight parameter A = .25 for ALOS-1
and A = .5 for ALOS-2 (see [10] for parameter description).
We found this denoising works better for segmentation than a
Gaussian filter [3] and the denoised image stack can be used
for subsequent analysis.

To complete preprocessing, we adjust image statistics
through large superpixels. Specifically, we normalize a
pixel’s backscatter p at image index ¢ according to
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where 1, 0; are the i™’s image’s mean and standard devia-

tion, respectively, within the segment the pixel p belongs. Be-
cause ALOS/PALSAR tiles span such a large area, a similar
normalization through the entire image produced poor results.
Our superpixel-based normalization method is more robust in
the presence of spatial variation within a ALOS/PALSAR tile,
for example due to changes in vegetation moisture content in
different parts of the study area. We select segments that are
approximately 2 orders of magnitude larger than the smallest
change we wish to observe (in this work, 2 ha is the mini-
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Fig. 2: Schematic for Change Detection Pipeline
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mum change we wish to observe). To acquire such segments,
we increased minimum size m and the scale s both by 2 or-
ders of magnitude from the ones we expect to use in change
analysis (see [3] for parameter description).

We now describe the change detection methodology. The
change detection outputs a map indicating regions of distur-
bance and the date that they were disturbed. We assume each
region is disturbed at most once. We frequently refer to forest
loss as “disturbance” or “change”.

To determine if change occurred in a particular image I;
of our stack, we first select a window around this image. We
call I; the focal image of our window. We specify a forward
window and backward window as in Figure 2. The window
sizes wy and wy, determine the temporal scale we wish to con-
sider. A longer window size means the changes should be ob-
servable at longer time scales. For our analysis of forest loss,
we typically ensure that each window spans a few years (we
used wy, = wy = 2 for ALOS/PALSAR images). Within a
window, we average the images within the forward and back-
ward window, respectively. We are left with an image pair
to perform change detection. These first steps of our change
analysis are summarized in the first row of the flow chart in
Figure 2.

Next, we introduce superpixel segments [3] to our change
analysis. From these segments, we derive mean backscatter
and mean backscatter change between the forward and back-
ward windows. We extract these superpixels using the first
and the last images in our stack. We found that selecting min-
imum size m to be 10 pixels and scale « to be 0.1 for ALOS-1
and ALOS-2 HV backscatter images produced quality seg-
ments with mean size approximately .25 ha. We generally
found this was the smallest size for quality segments without
changing the image contrast significantly given the resolution
of the images. Even though these segments are still sensi-
tive to speckle noise, our size filter effectively removed small
false positives. Further, finer segments are able to better cap-
ture disturbance boundaries. Because of the segment sizes we
used, we consider changes at modestly larger scale than [2]
as higher resolution change maps were less reliable. We also
select elementary segment features because the resulting de-
cision boundary for our change analysis is easily interpreted.

With these elementary segment features, we load a trained



SVM with a radial basis function as our model’s kernel [12]
to determine where changes occur. We trained our model on
a pair of images over a small study area where there was vis-
ible forest loss. In Figure 1, we show the extent of the train-
ing area. We trained our models using available validated
forestry data consistent with the ALOS/PALSAR time-series.
Because there are far more “change” than “no change” seg-
ments, we select a random sample of “no change” segments
to overcome the class imbalance. We ensemble 50 models
together (each trained on a different random sample) to re-
move sample dependence. With a trained SVM, we identify
change within a temporally averaged pair. To remove regions
of small, isolated changes, we apply a size filter, removing
changed areas that are smaller than 2 ha. We summarize the
entire change detection methodology in Figure 2.

3. APPLICATIONS

In this section, we apply our change methodology to ALOS/

PALSAR time series. We illustrate good results given that
some forest disturbances are not visible in SAR images and
the ground truth data is imperfect. We also show the lift of
tracking regions with superpixels over both segments gener-
ated by a square grid with comparable size and individual pix-
els. For our application, we consider a pair of images from
ALOS-1 and ALOS-2 stacks trained using well-known forest
disturbance data [13, 7]. We train an SVM on a small subset
of the full Laurentides tile and then validate each methodol-
ogy on the full tile. After we discuss the performance of the
methodology using superpixels, square segments, and indi-
vidual pixels, we apply the methodology and trained model
to the full time-series to illustrate the proposed data product.

3.1. ALOS-1

We now apply our change methodology to an ASF-processed
ALOS-1 stack [8]. We train and validate our methodology
using open Québec data [ 13] produced by the forestry service.
We consider only four types of forest disturbances: total cuts,
cuts with protection of small or high merchantable stems and
soil, and cuts with regeneration protection (see [13]). These
correspond to approximately 85% of all disturbances and are
visible over the training area we selected. Because we apply a
size filter to our final change map, we remove changes within
this dataset whose total area is below 2 ha.

The Québec data, in addition to providing when and
where disturbance occurred, also provides a segmentation of
the ALOS-1 tile, so we train our model using these segments
directly. We also apply our trained model to these segments
as an additional point of comparison. Because the forest
loss data is based on the Québec segments, our methodology
does best using these segments. These segments, which were
created using aerial photographs, allows us to incorporate
optical image information into SAR analysis. We note the F}

Segments Fy Prod. Acc. | User Acc.
Quebec Segments | 0.7719 | 0.6871 0.8806
Superpixels 0.597 | 0.5377 0.6709
Pixels 0.571 | 0.5131 0.6436
Squares 0.567 | 0.5044 0.6473

Table 1: ALOS-1 tile results
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Fig. 3: A detailed area of the tile, including the expansion of
route 175 [14] in the bottom of the image.

score of the other segmentations over our training area are
all roughly the same (= .7 & .01). In Table 1, we compare
changes tracked using superpixels, square segments, and indi-
vidual pixels on the full ALOS-1 tile. We show the F} score,
the producer accuracy, and user accuracy using the forestry
data as ground truth. Superpixels perform the best after the
Québec segments. The main source of mislabeling comes
from false positives, which includes the expansion of Route
175 [14] requiring the cutting of trees along this highway but
not included in the Québec forestry data.

Using our trained ensemble of models, we identify distur-
bance in the full ALOS-1 stack illustrated in Figure 3. We see
the expansion of Route 175 at the bottom of the image [14].

3.2. ALOS-2

We now describe our change analysis on an ALOS-2 stack
over the same area. We use Hansen forest disturbance data
[7] to train our model as Québec forestry data does not go past
2014. We performed radiometric terrain correction with [9].
We modify the original Hansen forest loss map so training is
done on segments rather than pixels, mitigating speckle and
improving efficiency. First, we extracted superpixels from
Hansen’s 2017 landsat mosaic. Then, with the changes that
aligned with our ALOS-2 retrieval dates, we labeled a seg-
ment as change if a majority of pixels within the extracted
segments were changed. This ensured that segments with a



Segments F, Prod. Acc. | User Acc.
Landsat Segments | 0.5169 | 0.5329 0.5019
Superpixels 0.4841 | 0.5098 0.4609
Pixels 0.4668 | 0.4672 0.4665
Squares 0.458 | 0.4371 0.481

Table 2: ALOS-2 results.

high volume of forest loss were trained correctly. Since re-
gions labeled as undisturbed are randomly sampled during
training, we expect false negatives to be of minor impact dur-
ing training. However, when validating our model on the full
ALOQOS-2 tile, we used the original Hansen change map with
losses smaller than 2 ha filtered out. We proceed with the
same change analysis as in Section 3.2. Table 2 compares the
change methodology on the Landsat segments, superpixels,
square segments, and individual pixels, illustrating that the
superpixels derived from Landsat do for change detection.

4. CONCLUSIONS

We have introduced a flexible change detection methodology
for identifying forest loss in ALOS/PALSAR images and val-
idate the methodology with official Québec forestry data [13]
and Hansen forest loss products [7]. Our methodology uses
simple features so that this change method can be adapted for
other forest sites and other L-band image stacks. We demon-
strate the use of superpixel segmentation in our change anal-
ysis to improve computational efficiency, reduce speckle, and
incorporate optical information. We compare superpixel seg-
mentation within our change methodology favorably to seg-
ments generated by a square grid cells and individual pixels.
Further, we illustrate how spatial segmentation can be used
to incorporate optical data into our SAR change analysis to
improve change detection accuracy. In future work, we plan
to compare more spatial segmentation methods in addition to
expand our methodology to create change maps over multiple
tiles for larger studies.
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