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Swath Coverage

Background: Howat et al. (2015) 

NASA’s Oceans Melting Greenland (OMG) Mission
Ice campaigns: GLISTIN-A radar altimeter (Ka-band at 35 GHz; 8.5-mm 
wavelength) single pass interferometer (25-cm baseline length

Swath width: 10 – 12 km
(Moller et al., 2011; Hensley et al., 2016)

NASA's Gulfstreram-III aircraft, with the GLISTIN-A radar instrument visible below, on the 
runway at Thule Air Base, Greenland.



Ocean campaigns: Observations 
made on the continental shelf 
and in select fjords

The arborne AXCTD campaign is 
designed to mainly sample the 
ocean in deep cross-shelf 
troughs.

Greenland Institute of 
Natural Resources

NASA’s Oceans Melting Greenland (OMG) Mission

Ocean observations in 
Disko Bay before 2015

AXCTD Locations



NASA’s Oceans Melting Greenland (OMG) Mission

OMG data are publicly available at:
https://omg.jpl.nasa.gov/portal/browse/
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Jakobshavn
Isbrae

Jakobshavn Isbrae (Sermeq Kujalleq)
Greenland’s fastest flowing glacier, with the largest ice discharge.
(Joughin et al., 2014; Bindschadler, 1989)

The glacier has been undergoing rapid retreat since the late 1990s.
(e.g., Thomas et al., 2003; Holland et al., 2008; Motyka et al., 2011)

Developed Greenland largest ice discharge anomaly.
(Enderlin et al., 2014; Howat et al., 2014)

Gardner et al. (in press) 

Ice Flow Speeds
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Surface Lowering Between 2003 and 2016
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4 km

Jakobshavn 2016



4 km

Jakobshavn 2017
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Thickening continued in 2018
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Surface Elevation Change
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Submarine melting at the front is calculated with a plume model. 
(Carroll et al., 2016; Jenkins, 2011) 

Strong correlation is found between rates of submarine melting and 
glacier elevation change.

Carroll and Sutherland (2015) 

Submarine melting at the front of the glacier



Sensitivity of calculated melting rates to 
plume model inputs 
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Bed: Morlighem et al. (2017)



Subglacial discharge from RACMO2.3p2
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Ocean temperatures in Disko Bay

Locations of CTD profiles 

Temperatures in Disko Bay have cooled to lowest level since mid 1980s
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Ocean temperatures in Disko Bay at 250-m depth

Locations of CTD profiles 

Sill at entrance of the fjord is ~250 m deep.



Temperature and Salinity in Disko Bay and 
Davis Strait (200 – 250 m)
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Cooling signal is originating 
from farther south



Good agreement between observation and ECCO state estimate

Temperature Evolution in Davis Strait
(200 – 250 m)



Depth-time evolution of 
temperature anomalies

We use the ECCO ocean state estimate to investigate 
the origins of the cooling.

Greater than normal cooling in the first half of 2015 
and exceptionally weak warming in the latter half.
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Nov. 2008 to Apr. 2009 Nov. 2015 to Apr. 2016
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Evolution of temperature in 
the West Greenland Current 
(Location C)

Wintertime heat loss in 2015-2016 
leads to mixed layer deepening 
and cooling relative to other years.

Of the 2 ºC Cooling, 1.25 ºC is 
explained by boundary current 
change. The remainder is due to 
Subpolar Gyre cooling.
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Wintertime heat loss in 2015-2016 
leads to mixed layer deepening 
and cooling relative to other years.

Of the 2 ºC Cooling, 1.25 ºC is 
explained by boundary current 
change. The remainder is due to 
Subpolar Gyre cooling.



500 m

Ocean modulation of glacier 
dynamics continued after ice-
shelf removal.

Even on retrograde beds, 
external forcing influences 
the rates of grounding line 
retreat, or advance. 

Jakobshavn has alternated 
between stabilization and 
retreat in the past (Csatho et 
al., 2008). That offers an 
opportunity to discern the 
processes involved.

General Conclusions

OMG data are publicly available at:
https://omg.jpl.nasa.gov/portal/browse/



Surface elevation change (m)
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Backup Material
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Jakobshavn expected to continue 
retreating 

Retrograde bed and the decadal persistence of the 
retreat suggested similar behavior over the coming 
decades.



Subglacial discharge from 
RACMO2.3p2

Yearly-integrated

Daily

Submarine melting at the front 
calculated with a plume model  

Carroll and Sutherland (2015) 

Submarine melting



Temperature and Salinity in Davis Strait (200 – 250 m)

ECCO2 ocean state estimate produces a similar timing and 
magnitude of the 2015-2016 cooling event, supporting the 
conclusion that most cooling is coming through DS, and 
enhancing confidence in ECCO as a diagnostic tool.

Greater than normal 
cooling in the first 
half of 2015 and 
exceptionally weak 
warming in the 
latter half.



Cooling of 1.5  to  2°C in Atlantic 
water between 2015 and 2017. 
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Submarine melting

Correlation is strong between submarine 
melting and surface elevation change.

Ocean cooling is the main factor in 
lowering submarine melting rates 
between 2015 and 2017.



Surface elevation difference (m)
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GLISTIN – ATM 
(Jakobshavn northern swath)

Mean  =  0.18 m
Std =  2.15 m
16463 coincident points <= 25 m apart

Surface elevations (m
)

GLISTIN :  20 March 2016 
ATM       :  16 May 2016

Related presentation: Delwyn Moller et al., Tuesday 13:40 - 18:00, Poster B23B-2065 
(invited)
“Calibration and Validation of the GLISTIN-A Instrument: Results From the First Two Years 
of NASA’s Oceans Melting Greenland Mission”

Data Validation
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△h :  2018 - 2017Thickening continued in 2018
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Bondzio et al. (2017)

Front retreat



O
cean Depth (m

)
10 profiles with data from below 
300 m in Disko bay during 
summers of 2015, 2016 and 2017.

Cooling of 1.5  to  2°C in Atlantic 
Water between 2015 and 2017. 

Disko Bay: cooling of Atlantic Water CTD data:  2015, 2016 and 2017



Enderlin et al. (2014)

Largest mass loss to the ocean
Contributed the equivalent of ~0.9 mm to global mean sea-level 
rise between 2000 and 2010 (Howat et al., 2011).
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Probe away!

Chute open!



1. Jakobshavn       :  15  to 20 m

2. Kangerlussuaq :  -5 to -10 m

3. Koge Bugt :   20 to 30 m

5. Helheim              :  -10 m

6. Midgard               :  -20 to -25 m
(Eastern branch  :  -10 m)

7. Koge Bugt South:  No clear change

9. Mogens South    :  -10 m

15. Mogens North   :  -20 to -30 m

>> Mogens Central :  -15 to -20 m

>> Maelkevejen :  -35 to -40 m     

Summary and 
Conclusions



Jakobshavn might be entering a new regime of slower flow, increased 
volume, advancing front and cooler ocean conditions.

In the southeast, changes in glacier and ocean conditions are diverse.

Wide-swath, high-resolution observations help interpretation and can 
constrain numerical models.

Simultaneous observations of ice and ocean conditions are providing 
valuable insights into observed changes.

Data are publically available at:
https://omg.jpl.nasa.gov/portal/browse/

Summary and 
Conclusions



Multibeam + 
singlebeam echo 

sounders

Bathymetry from sonar. 

Horizontal res.: 25 m, 
vertical precision < 1 m. 

GLacier and Ice 
Surface Topography 

INterferometer
(GLISTIN-A)

Glacier elevation in a 10 
km swath from radar.

Horizontal res.: 3 m, 
vertical precision < 0.5 
m.

Airborne 
gravimetery

Bathymetry from gravity 
anomalies. 

Horizontal res.: 1.5 km, 
vertical precision of ~100 m.  

Bathymetry
Airborne 

eXpendable 
Conductivity, 

Temperature and 
Depth (AXCTD) 

in situ temperature and 
salinity from ~250 CTD 
probes deployed mainly 
on the Greenland shelf.

CT
D

Ocean campaigns Glacier campaign

OMG: Mission Components 



Talk Plan

Jakobshavn

Koge Bugt

Kangerlussuaq

Helheim

Maelkevejen

Midgard

Mogens North

Koge Bugt South

Mogens Central
Mogens
South

Background DEM: 
Howat et al. (2015) 

Glacier fronts: 
Joughin and Moon (2015) 

Glacier mass-loss ranking: 
Enderlin et al. (2014)

Data Validation 
(Jakobshavn)

Changes in the Southeast

Jakobshavn

Summary and Conclusions
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