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28 and Counting
Why is JPL involved in cubesat missions?
* Fast Infusion of New Technology
* High Value Science Missions
* Miniaturization of Instruments
* More Flight Opportunities
* To “Dare Mighty Things”
e Lay down tracks for others to follow
Involvement began in 2011 (or did it?)
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JPL-involved Cubesat Timeline
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Example RoadMap for Miniaturizing Instruments

Visible

“‘

Miniature Dyson
spectrometer

W

Snow and Water Imaging

Spectrometer

Spatial: =5° , 0.28 km
Spectral: 228 Bands,
350 nm — 1.65 ym

Dual-
JPL IR&D Frequency
Wide-Field neechol SSPA &
Gratin MMIC Power
: Re?e‘ij‘{er Combiner
including
er(WEGS) Detector
Radiometer
Backend
and Power
Conditionin
9
JPL BIRD Motor and Up/Down
MWIR Drive CRmvEr G
Detectors Electronics
Reflector
— Command
/b,” ) and Data
& 3 Handling: .
JPL Qualified “’L s oS! Processing
Thales Cooler & W'N\ FPGA (Pulse
5 4 Compression
/1 MASC and Modulation) MicroGRACE Gravity

CubeSat Infrared
Atmospheric Sounder
(CIRAS)

Spatial: +48.3° , 13.5 km
Spectral: 1000 Channels,
4 um

4.1-5.
SWAP: 6U, 9 kg, 15W, 5 Mbps  s\ywAP: 6U, 20 kg, 30 W, 1 Mbps

Microwave Atmospheric
Sounder

on CubeSat (MASC)

Spatial: +=45° , 15 km (183) —
20 km (118)

Spectral: 8 Channels: 118-183
GHz

SWAP: <0.01 m3, 3kg, 7 W,
10 kbps

Measurement

Spatial: 5 km (Horiz) x 250m (Vert)
Spectral: 35.6 GHz

SWAP: 6U, 20 kg, 30 W, <1 Mbps

RalnCube: Precipitation
Profiler

Spatial: 5 km (Horiz) x 250m
(Vert)

Spectral: 35.6 GHz

SWAP: 6U, 20 kg, 30 W, <1 Mbps

Slide courtesy
J. Hyon, JPL



Cubesat-sized Instruments — 2012 and 2019

Technology Selva* and Freeman
Krejci, 2012 2019

Atmospheric Chemistry Instruments Problematic Feasible PICASSO, IR sounders
Atmos Temp and Humidity Sounders Feasible Feasible CiRAS

Cloud Profile and rain radars _ Feasible RainCube

Earth Radiation Budget radiometers Feasible Feasible SERB, RAVAN

Gravity Instruments Feasible Feasible Need a demo mission
Hi-res Optical Imagers Feasible Planetlabs

Imaging microwave radars Feasible Ka-Band 12U design
Imaging multi-spectral radiometers (Vis/IR) Problematic Feasible AstroDigital

Imaging multi-spectral radiometers (uWave) Problematic Feasible TEMPEST-D, TROPICS
Lidars Feasible Lunar Flashlight
Lightning Imagers Feasible Feasible RaioSat

Magnetic Fields Feasible Feasible InSPIRE

Multiple direction/polarization radiometers Problematic Feasible HARP Polarimeter
Ocean color instruments Feasible Feasible SeaHawk

Precision orbit Feasible Feasible CanX-4, -5

Radar altimeters Feasible SNoOPI »
Scatterometers Feasible GNSS refl. (CyGNSS)




JPL Technologies and Capabilities

IRIS Radio Deployable Reflector Sphinx C&DH

DSN Communications
and Navigation OnBoard Data

Protocols Reduction
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ISARA — 100 Mbps Downlink Capability

Slide courtesy Richard Hodges and the ISARA team
v’ First reflectarray antenna flown in space ‘

v’ First high gain antenna integrated with
solar panels (low mass delta)

v’ First calibrated antenna gain
measurement performed from space —
33.4 dB peak

v First 100 Mbps CubeSat (3U) telecom
downlink capability (from LEO)

Jan 2018

Signal Power Measurements

Max delta of 14.358 + 0.546 dB occurred at elevation angle of 32.7819 and at Saturday, March 10, 2018 17:17:02.157 (UTC)
I

(dB)

Normalized Delta

170
UTCG Time (sec)



RainCube — first cubesat radar

Slide courtesy Eva Peral and the RainCube team

v’ First radar cubesat (6U) v Launched to ISS May 21, 2018
v’ Vertically sounding, precipitation v First science data August, 2018
measurements

In-orbit orientation g

v" 0.5 m diameter Ka-Band antenna (1.5U
when stowed) — Tendeq license

v 2.5U radar electronics

01/18: I&T




ASTERIA — hunting exoplanets one star at a time

Pl: Sarah Seager, MIT; Slide courtesy Matt W. Smith and the ASTERIA team

Arcsecond Space Telescope Enabling 11/17: Deployed from ISS

12/17: First Image

Research in Astrophysics (ASTERIA)

v’ Precision pointing to better than
0.5 arcsec RMS

Thermal control of the focal plane
to < 0.01K

Exoplanet transits using stellar

v
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ASTERIA - Pointing and Thermal Control

Slide courtesy Matt W. Smith and the ASTERIA team

v" Achieved pointing error < 0.5 v" Achieved focal plane thermal control
arcseconds RMS over 20 minutes < £0.01 K over 20 minutes
v Blue scatter points show pointing v'  Optical Telescope Assembly is
without piezo stage correction thermally isolated, stable
v" Red scatter points show pointing v" Trim heaters and coarse/fine control
with piezo stage correction loop maintain temperature stability
baffle 2
20 FP1
Black line is a moving window average x FP2
15+ 1 27.015 {1  over 1 minute x FP3
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5 o
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MarCO — the first Interplanetary Cubesats




INSPIRE — Pathfinder for MarCO

[still on the shelf]

UHF Anten n>§_

(ISIS)

Band Patch Antennas (JPL) Lo
[two sets]

Star Tracker
(Blue Canyon)

C&DH + Watchdog Board
Lithium UHF (AstroDev)

Processing Board
(CalPoly / Tyvak)

Structure (JPL)

'

Ready for launch since 2014

Nav/Comm X-Band Radio (JPL) - - ”":’;
Cubesat Developer’s Workshop, 2019 © 2019 California Institute of Technology. U.S. Electrical Power SYStem n 19
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EXPLORATION MISSION-1:

LAUNCHING

SCIENCE & TECHNOLOGY
SECONDARY PAYLOADS

13

CUBESAT
EXPLORERS

GOING TO DEEP SPACE
WHERE FEW CUBESATS
HAVE EVER GONE
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Then a swarm of lunar
cubesats are planned
to launch with EM-1
(20207?)
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PI: Tristan L’Ecuyer, UWisc SIide courtesy Brian Drouin, JPL

v" Two 3-U CubeSats in asynchronous polar orbits
v Miniaturized IR spectrometer

The Arctic is Earth’s thermostat. It Planned launch
regulates the climate by venting excess

: 2U Thermal IR Spectrometer
energy received in the tropics. in 2021

GRATING
/1;%\

“ Nearly 60% of Arctic emission occurs at
wavelengths > 15 ym (FIR) that have
never been systematically measured.

PREFIRE improves Arctic climate
predictions by anchoring spectral FIR

emission and atmospheric GHE §) 2 - Optical bench assembly

& b - Calibration motor assembly
THERMOPILE c - Calibration target

Power
peak/avg

Thermopile array|  Spectral resolution ‘ Spatial coverage ‘ Mass ‘Data rate

0.84 um from 16 cross-track pixels with
) 0—45 um 7 1.2° footprints
/"

Jet Propulsion Laboratory Space Dynamics -
WL,STEQ”[}{%!N S S EC @ California Institute of Technology ‘% / S LARGRATS f‘l@]‘ University of Colorado Boulder M UNIVERSITY OF MICHIGAN

0.97kg | 35kbps | 6.74/1.74 W




SNOOPI - SIGNALS OF OPPORTUNITY INVESTIGATION

Slide courtesy co-l Rashmi Shah, JPL

v Pl: Jim Garrison, Purdue U.

v" UHF Signals of Opportunity
track Snow Water Equivalent
(and Soil Moisture)

v' SoOp altimeter

v Planned launch in 2021

Retrieved SWE vs. In-situ SWE

220
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CubeSat IR Atmospheric Sounder (CIRAS)

[canceled but back in the game]

FPA HOTBIRD (JPL) Slide Courtesy

Dewar (IDCA)
(IR Cameras)

Payload

Electronics

Cryocoolers +
Electronics
(Ricor K508N )

Orbit 833 km 600 km
Spectral Range 650-2550 cm?! 1950-2450 cm-?
Spectral Resolution 0.9cm? 1.2-2.0cm
Spatial Coverage 2200 km 1520/139 km
Spatial Resolution 13.5 km 13.5/3 km
NEdT <0.2K <0.2K
Size 0.9x0.8x0.55m 6U

Mass 117 kg 14 kg

Power 90w 30w

Tom Pagano, JPL

Stepper Motor +
Mirror

)

Blackbody

Assembly
Black Silicon

8.04-8.05

Spacecraft

Immersion Grating
(JPL)



SPARCS 6U cubesat mission

Study UV environment of exoplanets around M dwarf stars

Slide courtesy of David Ardila, JPL

9 cm aperture
2-mirror
telescope

Dichroic + Two
detectors
Simultaneous
observations
FUV/NUV

1 day to 3 mth
‘staring’ mode

\‘/;

Stellar UV Flux
Planet Spectrum

‘ Stellar Model Flux

EUV - IR Wavelengths

Build new
stellar models

Measure UV
light curves

Fly
SPARCS

Planned launch in late 2021

Deployable
Solar panel

Radiator
Deployable
_ \\/\( radiator
P
N
N

UHF
Antenna

N

Transceiver f \

Patch Antenna f

UHF
Antenna

ACS: star tracker +
3 axis reaction
wheel

Vis-MIR Wavelengths

Measure UV

effects on planets

Biosignatures with
UV context from SPARCS

Planet spectroscopy
with JWST




SunRISE is in extended Phase A

'Sun Radlo Imaglng Space Experlment'
: _(SunRISE)

v Use radlo em155|ons to track solar
- CME part|cIe acceleratlon and -

transport e

\/ Proposed science swarm to form*
an’ RF Interferometer

R 6 spacecraft synthetic aperture
':“\/ Comblned GPS + HF recelver

v 6U Spacecraft .

Pathfinder (2017/18)

" Cubesat Developer’s
) Workshop, 2019




Looking at the Horizon

Cube-train Constellations for Earth Science Deep Space P-Pod

Wl

i

MarsDrop Micro-lander

Cupid’s Arrow Venus
Atmosphere Skimmer




CubeSats at Saturn?

v" Power — 11 days to fully charge a 200 Whr
capacity battery with 1.2-2W solar power

@ Saturn

v Control — need <0.003° pointing; >35°/sec
slew rates

v" X-Band Communications (relay to primary)
with 28 dBi reflectarray

v" Propulsion (chemical) — up to 250 m/s AV

v" Thermal — compact RHUs 1W; 40g RHU

Light-Weight
Radioisotope Heater Unit (LWRHU)

+ Heat Output - 1 watt

+ Fuel Loading - 2.65 g PuO,

+Mass (total) -40 grams

+ Size - 3.2-cm long x 2.6-cm diameter

Aeroshell End Cap

Lunar IceCube: 120 W @ Earth
Slide courtesy Andrew MarCo 28 dBi reflectarray

Bocher, Cal Poly SLO

S/

Encapsulated Fuel Pellet

Thermal Insulator Sleeves

&



And in 2020 the Mars Helicopter...
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