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Terrain classification (TC)
• Terrain classification (TC) is an essential component of a 

broader understanding of the terrain to be traversed by rovers

• We have developed a TC system from visible images

Spirit got stuck in a 
sand trap, 2010

Wheels of Curiosity 
rover got damaged

Sand Smooth Outcrop
Rocks Rocks on outcrop

Terrain classification from visible images

Estimated terrain type

Ground 
truth

Soil Rocks

SandBallast Bedrock

Rocky terrain



Terrain classification
• Terrain classification with visible information is challenging due 

to a variety of factors, of most importance being the changes in 
illumination

• The terrain classification can be aided by the fact that the 
temperature of various types of terrains depends on the 
thermal characteristics of the terrain
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Deep learning for terrain classification
• Existing approaches

1. Fully Convolutional Networks (FCN), such as DeepLab
• In general it requires a huge dataset to train its parameters

• If we do not have enough dataset to train FCN from scratch, finetune the 
parameters from pre-trained parameters 

2. U-Net
• It has short-cut connections, which help a lot with parameter training 

even given a small number of dataset 

• We propose two novel deep learning-based terrain 
classification methods based on U-Net and FCN (DeepLab), 
which combine visible and thermal IR images 

1. TU-Net (Two U-Net) 
2. TDeepLab (Two Deeplab) 

• We also extend the proposed methods to Siamese-based 
approaches to realize robustness to illumination changes
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U-Net for terrain classification from RGB images
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U-Net architecture

Cat: concatenate
C: convolution
ReLU: rectified linear unit
P: pooling
DC: deconvolution 

Loss function for terrain 
classification 𝓛𝑪𝑬: 
Cross entropy from
annotation images



TU-Net (Two U-Net)
• Three different architectures: fusion of visible and thermal 

images at different level
• TU-Net BL (bottom layer): fusion of local information
• TU-Net ML (middle layer): fusion of global information
• TU-Net TL (top layer): fusion of feature-level information
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Figure 2. The TU-Net architectures. BL, ML, and TL shows data fusion at bottom layer, middle layer, and top layer, respectively. ”Cat”,
”C”, ”ReLU”, ”P”, and ”DC” mean ”concatenate”, ”convolution”, ”rectified linear unit”, ”pooling”, and ”deconvolution”, respectively.
Relatively thick arrows between ”Cat” and ”C” include ”bilinear up-sample”. ”N” at the final layer show the number of classes. Light blue
rectangles show units of the contracting path (contracting units). Red and orange rectangles show two different units of expansive paths
(expansive unit 1 and 2).

cross-entropy loss function, as define as follows.

LCE = � 1

|S|
X

i2S

NX

j=1

yij log pij , (1)

where N , |S|, yij , pij are the number of classes, the to-
tal number of pixels over images S, groud-truth distribu-
tion at each pixel, and outputted probability distribution at
each pixel, respectively. The loss function is minimized by
a stochastic gradient descent method.

To realize robustness to illumination changes, we can
train the network with a training dataset with various illu-
mination conditions. However, with this approach we ex-
pect the trained network to implicitly model illumination
changes, and thus there is no guarantee that the network is
efficiently robust to illumination changes.

2.2. TDeepLab
In this section we explain about the proposed TDeepLab.

TDeepLab is based on DeepLab v2 from ResNet-101 [2],
and it has totally 101 layers. Since this network is very
deep, we use parameters trained with ImageNet as initial
values, followed by fine-tuning with the images used in
experiments. The main units in DeepLab are ’ResBlock’
which contains Residual Units and ASPP (Atrous Spatial
Pyramid Pooling) as shown in Fig. 3. In the proposed
TDeepLab, we have two architectures TDeepLab BL (Fig.
3 (a)) and TDeepLab TL (Fig. 3 (b)). TDeepLab BL in-
tegrates local features by concatenating input pair of RGB
and IR images. On the other hand TDeepLab TL combines
global features by getting summation of IR and RGB values
after a softmax process.

Figure 3. (a) TDeepLab BL and (b) TDeepLab TL. ResBlock con-
tains Residual Units and ASPP stands for Atrous Spatial Pyramid
Pooling.

2.3. Siamese TU-Net and Siamese TDeepLab
Siamese networks, which are reported with improved

network learning capabilities, enables to learn features of
each terrain type explicitly. Since the TU-Net has three dif-
ferent types of architectures, Siamese TU-Net also has three
types as shown in Fig. 4, Siamese TU-Net BL, ML, and
TL. Each architecture consists of two branches of the same

TU-Net BL 

Figure 2. The TU-Net architectures. BL, ML, and TL shows data fusion at bottom layer, middle layer, and top layer, respectively. ”Cat”,
”C”, ”ReLU”, ”P”, and ”DC” mean ”concatenate”, ”convolution”, ”rectified linear unit”, ”pooling”, and ”deconvolution”, respectively.
Relatively thick arrows between ”Cat” and ”C” include ”bilinear up-sample”. ”N” at the final layer show the number of classes. Light blue
rectangles show units of the contracting path (contracting units). Red and orange rectangles show two different units of expansive paths
(expansive unit 1 and 2).
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where N , |S|, yij , pij are the number of classes, the to-
tal number of pixels over images S, groud-truth distribu-
tion at each pixel, and outputted probability distribution at
each pixel, respectively. The loss function is minimized by
a stochastic gradient descent method.

To realize robustness to illumination changes, we can
train the network with a training dataset with various illu-
mination conditions. However, with this approach we ex-
pect the trained network to implicitly model illumination
changes, and thus there is no guarantee that the network is
efficiently robust to illumination changes.

2.2. TDeepLab
In this section we explain about the proposed TDeepLab.

TDeepLab is based on DeepLab v2 from ResNet-101 [2],
and it has totally 101 layers. Since this network is very
deep, we use parameters trained with ImageNet as initial
values, followed by fine-tuning with the images used in
experiments. The main units in DeepLab are ’ResBlock’
which contains Residual Units and ASPP (Atrous Spatial
Pyramid Pooling) as shown in Fig. 3. In the proposed
TDeepLab, we have two architectures TDeepLab BL (Fig.
3 (a)) and TDeepLab TL (Fig. 3 (b)). TDeepLab BL in-
tegrates local features by concatenating input pair of RGB
and IR images. On the other hand TDeepLab TL combines
global features by getting summation of IR and RGB values
after a softmax process.

Figure 3. (a) TDeepLab BL and (b) TDeepLab TL. ResBlock con-
tains Residual Units and ASPP stands for Atrous Spatial Pyramid
Pooling.

2.3. Siamese TU-Net and Siamese TDeepLab
Siamese networks, which are reported with improved

network learning capabilities, enables to learn features of
each terrain type explicitly. Since the TU-Net has three dif-
ferent types of architectures, Siamese TU-Net also has three
types as shown in Fig. 4, Siamese TU-Net BL, ML, and
TL. Each architecture consists of two branches of the same

TU-Net ML 



TU-Net (Two U-Net)
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where N , |S|, yij , pij are the number of classes, the to-
tal number of pixels over images S, groud-truth distribu-
tion at each pixel, and outputted probability distribution at
each pixel, respectively. The loss function is minimized by
a stochastic gradient descent method.

To realize robustness to illumination changes, we can
train the network with a training dataset with various illu-
mination conditions. However, with this approach we ex-
pect the trained network to implicitly model illumination
changes, and thus there is no guarantee that the network is
efficiently robust to illumination changes.

2.2. TDeepLab
In this section we explain about the proposed TDeepLab.

TDeepLab is based on DeepLab v2 from ResNet-101 [2],
and it has totally 101 layers. Since this network is very
deep, we use parameters trained with ImageNet as initial
values, followed by fine-tuning with the images used in
experiments. The main units in DeepLab are ’ResBlock’
which contains Residual Units and ASPP (Atrous Spatial
Pyramid Pooling) as shown in Fig. 3. In the proposed
TDeepLab, we have two architectures TDeepLab BL (Fig.
3 (a)) and TDeepLab TL (Fig. 3 (b)). TDeepLab BL in-
tegrates local features by concatenating input pair of RGB
and IR images. On the other hand TDeepLab TL combines
global features by getting summation of IR and RGB values
after a softmax process.

Figure 3. (a) TDeepLab BL and (b) TDeepLab TL. ResBlock con-
tains Residual Units and ASPP stands for Atrous Spatial Pyramid
Pooling.

2.3. Siamese TU-Net and Siamese TDeepLab
Siamese networks, which are reported with improved

network learning capabilities, enables to learn features of
each terrain type explicitly. Since the TU-Net has three dif-
ferent types of architectures, Siamese TU-Net also has three
types as shown in Fig. 4, Siamese TU-Net BL, ML, and
TL. Each architecture consists of two branches of the same
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TDeepLab (Two DeepLab)
• TDeepLab is based on DeepLab v2 (Backbone is ResNet-101 v1)

• 2 architectures: TDeepLab BL and TDeepLab TL
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[1] L. Chen, et al., “DeepLab: Semantic Image 
Segmentation with Deep Convolutional Nets, Atrous
Convolution, and Fully Connected CRFs”, arXiv 2016
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Siamese-based TU-Net and TDeepLab

• TU-Net and TDeepLab can implicitly learn implicitly 
illumination changes with images captured at various time of a 
day

• To make it explicitly, we integrate a Siamese approach into 
TU-Net and TDeepLab

• 3 architectures of Siamese-based TU-Net
• Siamese TU-Net BL, Siamese TU-Net ML, Siamese TU-Net TL

• 2 architectures of Siamese-based TDeepLab
• Siamese TDeepLab BL, Siamese TDeepLab TL
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Siamese-based TU-Net
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Figure 4. (a) Siamese TU-Net BL, (b) Siamese TU-Net ML, and (c) Siamese TU-Net TL.

CNN, and these branches share parameters of the network.
To train the network robust to illumination changes, pairs
of visible and thermal images are prepared, which are im-
ages taken at the same location but different illuminations.
In Fig. 4 the loss functions LCE are shown with solid lines.
We introduce a Mean Squared Error LMSE based on global
information, which is just right before the expansing units,
to enforce the similarity measure between two images, as
shown with dotted lines. LMSE is defined as

LMSE =
1

|S|⇥ C

X

i2S

CX

j=1

(at1ij � at2ij )
2, (2)

where t1 and t2 show different time, and C is the number
of channels. For each of three Siamese TU-Nets, the total
loss function L are defined as follows.

1. Siamese TU-Net BL:
LBL = Lt1

CE + Lt2
CE + �LMSE

2. Siamese TU-Net ML
LML = Lt1

CE + Lt2
CE + �LMSE

3. Siamese TU-Net TL
LTL = Lt1

CE + Lt2
CE + �

⇣
LRGB

MSE+LIR
MSE

2

⌘

Here, � is a weight and in experiments we empirically set
as 200.0. The loss function is minimized by a stochastic
gradient descent method.

Siamese TDeepLab are also defined in a similar man-
ner with Siamese TU-Net, and it has two types, Siamese
TDeepLab BL and Siamese TDeepLab TL, as shown in
Fig. 5. The loss function for both architectures is defined as
LML = Lt1

CE + Lt2
CE .

3. Experiments
In this section, we first introduce a dataset which in-

cludes visible and thermal images, followed by experimen-
tal results.

Figure 5. (a) Siamese TDeepLab BL and (b) Siamese TDeepLab
TL.

3.1. Dataset of visible and thermal images
The dataset was collected at JPL on Nov. 17th 2017, with

a RGB camera (FLIR Grasshopper 5M) and a thermal cam-
era (FLIR AX65). We collected images every 1 hour, from
10 am till 5 pm (sunset), totally 8 times. Total number of
images at each time is about 52 images, by changing the po-
sition of the cameras. The dataset includes challenging im-
ages such as shadows, reflection due to the Sun, and direct
sunlight into the cameras (Fig. 1 (c)). The visible and ther-
mal images are taken by different cameras, so a registration
process between cameras is necessary. After we removed
distortion with estimated camera inner parameters, we ap-
plied an affine transformation with estimated homography
matrix.

We manually annotated all images into 7 categories, un-
labeled, sand, soil, rocks, bedrock, rocky terrain, and bal-
last, as shown in Fig 6. To evaluate the proposed methods
with the new dataset, we randomly separated images at each
time into 3 datasets, 50 % for training, 25 % for evaluation,



Siamese-based TDeepLab
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Figure 4. (a) Siamese TU-Net BL, (b) Siamese TU-Net ML, and (c) Siamese TU-Net TL.
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ages taken at the same location but different illuminations.
In Fig. 4 the loss functions LCE are shown with solid lines.
We introduce a Mean Squared Error LMSE based on global
information, which is just right before the expansing units,
to enforce the similarity measure between two images, as
shown with dotted lines. LMSE is defined as
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Here, � is a weight and in experiments we empirically set
as 200.0. The loss function is minimized by a stochastic
gradient descent method.

Siamese TDeepLab are also defined in a similar man-
ner with Siamese TU-Net, and it has two types, Siamese
TDeepLab BL and Siamese TDeepLab TL, as shown in
Fig. 5. The loss function for both architectures is defined as
LML = Lt1

CE + Lt2
CE .

3. Experiments
In this section, we first introduce a dataset which in-

cludes visible and thermal images, followed by experimen-
tal results.

Figure 5. (a) Siamese TDeepLab BL and (b) Siamese TDeepLab
TL.

3.1. Dataset of visible and thermal images
The dataset was collected at JPL on Nov. 17th 2017, with

a RGB camera (FLIR Grasshopper 5M) and a thermal cam-
era (FLIR AX65). We collected images every 1 hour, from
10 am till 5 pm (sunset), totally 8 times. Total number of
images at each time is about 52 images, by changing the po-
sition of the cameras. The dataset includes challenging im-
ages such as shadows, reflection due to the Sun, and direct
sunlight into the cameras (Fig. 1 (c)). The visible and ther-
mal images are taken by different cameras, so a registration
process between cameras is necessary. After we removed
distortion with estimated camera inner parameters, we ap-
plied an affine transformation with estimated homography
matrix.

We manually annotated all images into 7 categories, un-
labeled, sand, soil, rocks, bedrock, rocky terrain, and bal-
last, as shown in Fig 6. To evaluate the proposed methods
with the new dataset, we randomly separated images at each
time into 3 datasets, 50 % for training, 25 % for evaluation,

Siamese 
TDeepLab TL 



Experiment setting
• Dataset collection

• Every 1 hour from 10 am till 5 pm on Nov 17th 2017, 52 images at each 
time

• RGB camera (FLIR Grasshopper 5M) and thermal camera (FLIR AX65) 
• RGB images include challenging illumination changes
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Experiment setting
• Manually annotated images into 6 categories

• Sand, soil, rocks, bedrock, rocky terrain, and ballast

• At each time 52 images are separated into 3 dataset
• 50 % for training, 25 % for evaluation, and 25% for test dataset

• Training a model
• TU-Net is trained from a scratch
• TDeepLab is finetuned (initial parameters are trained with COCO)
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Exp 1. Train, evaluate, and test (all 5pm images)

• Visualization of example results
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Pixel 
accuracy

Mean 
accuracy

Mean 
IoU* 

Frequency 
weighted IoU* 

U-Net (RGB) 0.632 0.481 0.239 0.512

TU-Net BL (RGB + IR) 0.678 0.529 0.283 0.552

TU-Net ML (RGB + IR) 0.684 0.500 0.262 0.565

TU-Net TL (RGB + IR) 0.727 0.497 0.304 0.592

DeepLab (RGB) 0.871 0.708 0.599 0.781

TDeepLab BL (RGB+IR) 0.859 0.772 0.610 0.792

TDeepLab TL (RGB+IR) 0.911 0.820 0.679 0.848*IoU (Intersection over Union)

Ground truth annotated image Estimated result by TU-Net TL Estimated result by TDeepLab TL



Exp 2. Train, evaluate, and test (all 10am-5pm images)

• Siamese-based TU-Net works better than TU-Net
• Siamese TU-Net TL calculates a loss function of IR independently from 

the one of RGB
• IR information without RGB shows some ambiguity

• Both Siamese TU-Net BL and ML combines a loss function of IR and 
RGB

• On the other hand, Siamese-based TDeepLab is not effective
• One of the reason might be over-trained
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Pixel 
accuracy

Mean 
accuracy

Mean 
IoU* 

Frequency 
weighted IoU* 

TU-Net TL 0.581 0.435 0.211 0.447

Siamese TU-Net BL 0.612 0.542 0.307 0.491

Siamese TU-Net ML 0.620 0.534 0.303 0.505

Siamese TU-Net TL 0.563 0.517 0.257 0.463

TDeepLab TL 0.911 0.820 0.679 0.848

Siamese TDeepLab BL 0.803 0.665 0.482 0.696

Siamese TDeepLab TL 0.864 0.731 0.600 0.771



Exp 3. Train and evaluate (2pm-5pm), and test (10am-1pm)

• Visualization of example results

16Original image Annotated image Siamese TU-Net ML TDeepLab TL
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Exp 3. Train and evaluate (2pm-5pm), and test (10am-1pm)

• Results of Siamese TU-Net ML

• Results of TDeepLab TL
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Test data Pixel 
accuracy

Mean 
accuracy

Mean 
IoU* 

Frequency 
weighted IoU* 

10am – 1pm 0.633 0.461 0.279 0.531

2pm – 5pm 0.687 0.529 0.374 0.559

Test data Pixel 
accuracy

Mean 
accuracy

Mean 
IoU* 

Frequency 
weighted IoU* 

10am – 1pm 0.861 0.816 0.625 0.772

2pm – 5pm 0.886 0.786 0.653 0.806



Conclusions

• We proposed novel deep learning-based terrain classification 
methods robust to illumination variations, called TU-Net and 
TDeepLab and those Siamese-based methods

• Future work
• Compare the proposed approaches with AdapNet++
• Integrate depth information
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Backup
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TDeepLab
• Probability of each type is obtained
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Result by TDeepLab
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False positives

Probabilities
sand: 0.35
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It can estimate how 
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types
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Benefits of IR images
• Remote measurements of                                                  

mineralogy and thermophysical                                          
properties of the scene

• Estimate rock size from orbiters
• Useful for future landing site selection
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Colorized mini-TES image (Spirit). The different 
colored circles show a spectrum of soil and rock 
temperatures

Thermal R.A. from Visible Imagery

Golombek et al. 2018


