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Modern Satellite Mission Design

• Technological advances (especially 
cube-sat and small-sat) have greatly 
expanded the trade space for satellite 
mission design

• There are increasing demands to 
demonstrate (quantitatively) the value of 
a new set of measurements in advance

• Especially important to evaluate 
constellations of small satellites

• There is room for innovation in the 
design of experiments and evaluation of 
measurement impact.
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Aerosols, Clouds, Convection, and 
Precipitation (A+CCP)

• Designated observables from 2017 Decadal Survey
• Dynamic cloud systems are important and not as well observed as we would like

• Produce all of the Earth’s fresh water (support of human society, input to surface hydro)
• Source of largest atmospheric climate uncertainties

• Aerosol distribution and properties and interactions with clouds are highly uncertain
• Science foci (specific to CCP)

• Relate cloud properties to precipitation processes and radiative forcing
• Understand how convective dynamics and vertical transport are connected 

to cloud and precipitation properties

• Prior to KDP-A, conduct extensive architecture studies
• These take the form of a spectrum of observing system simulation experiments
• Program of record will be part of the mission
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Quantifying Observational Requirements 
Observing System Simulation Experiments (OSSEs)

• Traditionally: evaluation of potential impact of new observations on a NWP 
forecast (Errico et al. 2013 (QJRMS); Hoffman and Atlas, 2016 (BAMS))

• Data assimilation at cloud scales is challenging. 
• Fundamentally: OSSEs quantify information in a future observing system
• Consider a spectrum of OSSEs:

• Sampling: What are the sampling requirements for observing a given feature?
• Retrieval:  Do measurements provide enough information to estimate 

geophysical quantities of interest? What are the uncertainties?
• Process:   Which measurements are needed to characterize a process 

(or set of processes)
• Forecast:  Does assimilation of new observations improve a weather forecast?
• Climate: Do observations contain information that can be used to constrain 

climate forcing and/or response?
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OSSEs for CCP: Specific Considerations

• Goal: assess the degree to which specific measurements: 
• Achieve the observing system desired capability
• Address the science goals and objectives

• Forecast OSSEs for convective processes and at convective 
scales have limitations

• Data assimilation for clouds, convection and precipitation is challenging 
(nonlinearity, representativeness, rapid temporal evolution)

• Addressing a science objective may not lead to forecast improvement 
(and vice versa) 

• Forecast OSSEs would not leverage the existing field campaign data archive
• However, forecast OSSEs consider the program of record 

(assuming PoR is simulated accurately…)
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OSSEs for CCP: Key Objectives

1. Assess sampling
1. Is a single observatory sufficient, or is a train / convoy needed?
2. What are the tradeoffs among swath width, footprint size, and 

sensitivity/SNR?
2. Trace observables to science objectives

1. Is uncertainty in retrieved geophysical quantities small enough to 
identify signals of interest?

2. Do measurements reduce uncertainty in a process or outcome of a 
process (analysis/forecast)?

3. Connect measurables to value (science outcomes, risk, cost)
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Sampling OSSE
• Determine orbital and/or swath characteristics
• Given a dataset that includes the feature(s) of 

interest, this is fast and simple
• Fundamental question: can the characteristics 

of a distribution be reproduced from a particular 
sub-sample?

• Compute statistics from a large dataset 
(e.g., a global nature run)

• Full dataset
• Sub-sample consistent with particular swath, 

resolution, and orbit
• Compare the distributions
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Retrieval OSSE
Use simulated atmospheric states + instrument simulators + retrieval 
algorithms to assess observability and uncertainty
• Step 1: use model + simulator

• Rapidly assess relationships among 
geophysical quantities and measurements

• Fast and simple, but does not place error
bars on the retrieval
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• Step 2: add a retrieval algorithm
• Simulate measurements from specified

state, then conduct retrieval
• Vary obs types and uncertainties
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Retrieval Uncertainty Assessment
• Recall components of an OSSE:

• Representation of nature
• Simulation of observations
• Quantitative measure of impact / effectiveness of measurements

• Observing system uncertainty experiment for cloud observables
1. Define geophysical parameters of interest
2. Set desired uncertainty bounds*
3. Collect a list of candidate measurements**
4. Perform simulated retrievals***
5. Compare uncertainty in retrieval with desired uncertainty

* Quantifying this is a challenge
** Presumes the existence of accurate measurement simulators
*** Presumes the existence of a retrieval algorithm that produces estimates of uncertainty

D. J. Posselt 
Derek.Posselt@jpl.nasa.gov 13



Drizzle Processes in Liquid Clouds
• Rain initiation in shallow clouds is crucial for 

climate feedbacks and remains poorly 
understood

• Depends on the size distribution of cloud 
and rain drops

• Conduct a retrieval OSSE to understand 
which observations are needed to inform 
cloud and rain droplet population

• Nature: in-situ (aircraft) obs of clouds
• Candidate measurements: active (radar) 

and passive (microwave and visible/near-IR)
• Measurement simulators readily available
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Retrieval

• In practice: optimal estimation
• Characterize information space using a Markov chain Monte 

Carlo (MCMC) algorithm
• Sample of the probability distribution of retrieved states
• Understand Gaussianity of solution
• Flexible computation of error statistics

• Assess current observing system (CloudSat + MODIS)
• Test future observing system (dual frequency radar + 

microwave + reflectances)
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Posterior Densities from MCMC

• Run MCMC for 
several candidate 
observing 
configurations

• Evaluate CloudSat
vs notional CCP 
measurements
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Statistics of Profiles

• Compare profiles
• Uncertainty represented in quantiles
• Addition of radar frequency provides 

significant constraint on the profile
• What is the role of the program of 

record?
• How much uncertainty is too much?
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Assess Measurement Uncertainty

• Degrade radar and passive microwave measurements
• Ultimately, most information is provided by program of record 

(visible and near infrared reflectance)
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Uncertainty:
a)3 dB radar + 2 K Tb
b)3 dB radar + 4 K Tb
c) 6 dB radar + 8 K Tb



Use of Field Campaign Data in Retrieval OSSEs

• A key component of the DS study is the 
use of existing field campaign data

• When combined with a Bayesian retrieval 
framework, field measurements can be 
used in an OSSE context

• Example: “data denial” retrieval study from 
OLYMPEX (Leinonen et al. 2018; JAOT)

• Retrieve parameters of snow PSD 
using 1, 2, or 3 radar frequencies
(APR-3: W, Ka, Ku)

• Compare vs. in situ data 
(2D-S Probe, UND Citation)
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In situ vs retrieved snow PSD parameters from 3, 2, and 1
radar frequencies. Adapted from Fig. 3, Leinonen et al. 2018 (JAOT)
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Process OSSE
• Assessment of whether a measurement 

captures a process is challenging
• E.g.: ”determine convective transport and 

redistribution of mass, moisture, 
momentum, and chemical species”

• Requires:
• Identify process of interest
• Establish uncertainty bounds on the process
• Connect (quantitatively) measurement with 

process

• This is an area of research, but early 
results indicate ensembles of simulations 
can be used to quantify capability
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Cloud-Scale All-Sky Data Assimilation
(Courtesy Masashi Minamide, masashi.minamide@jpl.nasa.gov)

• Cloud-scale all-sky DA is challenging due to representativeness
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If… or then obs increment can be very large

SLP update will be 𝜎!,#𝜎!,$𝑐𝑜𝑟𝑟 𝑥, 𝑦
𝜎!,#% + 𝜎&%
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5% + 3%

×40𝐾~

• Consider an update to sea level pressure given obs of brightness temp

𝟏𝟓𝒉𝑷𝒂

• Need to deal with 
obs-forecast 
mismatch Inflate 

Background 
Error (ABEI)

Inflate 
Observation 
Error (AOEI)



Forecast/Analysis OSSE
(Results courtesy Masashi Minamide, masashi.minamide@jpl.nasa.gov)
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• Applications may or may not explicitly include 
forecasting, but data assimilation can be used to 
assess measurement information

• Measurement effect on the analysis – the state 
estimate produced by data assimilation

• Assimilate new data alongside current data -
allows assessment of information in context

• Example: assimilation of GOES-16 brightness 
temperatures

• WRF model with 3 km grid spacing on inner domain
• Use Ensemble Kalman Filter DA with 60 members
• Account for representativeness using AOEI and ABEI

Launch: Oct 2016 (GOES-16, USA)
Frequency: 10-15 minutes

Resolution: 2 km

(Otkin 2012)

WV channel Weighting Functions 
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Water Vapor Channels
Band-8 6.19µm
Band-9 6.95µm

Band-10 7.34µm



Forecast/Analysis OSSE
(Results courtesy Masashi Minamide, masashi.minamide@jpl.nasa.gov)
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Unorganized Convection: 06/11/2017 during CPEX

DA cycle: 12Z–21Z/11 June 2017
Available CPEX observations: 
Dropsondes, Doppler radar, 
Doppler wind lidar, MW radiometer
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Microwave Rain Rate
2000 UTC 11 June 2017

CPEX Data Portal, JPL: https://cpexportal.jpl.nasa.gov



Model Configuration and Experiment Settings

• WRF ver.3.6.1, CRTM, PSU WRF-EnKF (APSU) DA
• 27/9/3 km grid, 60 member ensemble (EnKF on domain 3) 
• Assimilate conventional obs every 3 hours, 

GOES-16 channel 8 every 15 min
• Error modeling, inflation, and localization

• Adaptive Observation Error Inflation (AOEI) (Minamide & Zhang, 2017, MWR)
• Adaptive Background Error Inflation (ABEI) (Minamide & Zhang, 2019, QJRMS)
• Successive covariance localization: 

• 18 km thinning with 
200 km localization radius

• 12 km thinning with 
30 km localization radius

• 3K brightness T errors
GOES-16 All-sky infrared BT (ch8: 6.19 μm)

Conventional obs.

BT+conv

conv

Every 15 mins

Every 3 hoursD. J. Posselt 
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EnKF Performance (Analysis)
(Results courtesy Masashi Minamide, masashi.minamide@jpl.nasa.gov)

GOES-16 obs. EnKF Analysis
(BT+conventional)

EnKF Analysis
(conventional)

Assimilation of GOES-16 brightness temperature (with Adaptive Observation & Background Error 
Inflation (AOEI and ABEI) methods) worked well in constraining the convective activity during CPEX
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EnKF Performance (Probabilistic Forecast)
(Results courtesy Masashi Minamide, masashi.minamide@jpl.nasa.gov)

GOES-16 obs. BT+conventional conventional

20 Ensemble probabilistic forecast of Tb < 215 K 
Initialized at 15Z/11 June 2017 (after 3-hours of assimilation)

Although shifted eastward, assimilation of all-sky BTs helped to 
better constrain the occurrence of newly developing convection.D. J. Posselt 
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Next Step: Convective Dynamics
• CPEX and Harvey DA results look very realistic, but… are they? 
• Cloud top brightness temperatures are connected to unorganized deep 

convective updrafts, but only indirectly.
• Questions:

• What constraint did the GOES-16 observations 
place on convective dynamics?

• Which additional observations may be necessary 
to constrain convective vertical mass flux?

• Next steps:
• Mine ensemble to explore constraint of GOES-16
• Simulate other observations and assess their impact (probilistically)
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OSSE Spectrum: Summary and Caveats

• Adequate sampling and resolution is the low bar
• Next step is geophysical parameter uncertainty assessment
• Both are pre-requisites for process and/or forecast OSSEs
• Uncertainty can be quantified, but results should be qualified…

• Outcomes of any OSSE depend on 
• Representation of “nature” 
• Representation of uncertainty in measurements and forward models

• Caution - by the time of launch/data acquisition:
• Retrieval framework may (will) be different
• Program of record may (will) be different
• Forecast/DA systems may (will) be different
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Putting it all together: 
A Notional End to End OSSE for Convective Dynamics

• Sampling: 
• GMAO nature run + convective system 

feature identification: determine orbit period, 
swath, single vs multiple observatory, etc

• Use database of high resolution CRM 
simulations to explore effect of changes in 
footprint size, instrument sensitivity, and 
swath width (consequences of partial 
observation of updrafts)

• Retrieval:
• Apply instrument simulator to CRM database
• Retrieve vertical motion, compare 

uncertainty vs desired capability
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• Process:
• Vary controls on convective dynamics in a 

CRM ensemble
• Use synthetic dynamics retrieval to assess 

information on convective processes

• Analysis:
• Use a convective scale ensemble as a 

baseline
• Assimilate GOES-16 (and other PoR data)
• Simulate measurements from one member, 

and assimilate them in the EnKF system to 
assess addition of information relative to PoR

Targeted Observable: Convection and Cloud Dynamics (DS TO-5)
Science Objective: measure vertical motion in deep convective cloud systems

©2019. All rights reserved. A portion of this research was carried out at the Jet Propulsion Laboratory, 
California Institute of Technology, under a contract with the National Aeronautics and Space Administration.



Backup Slides
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OSSEs for CCP: Tools and Algorithms
Leverage available resources
1. Instrument simulators with (nonlinear) Bayesian retrieval algorithms

• Allow robust estimates of information content and observability
• Produce quantitative assessments of retrieval uncertainty
• Accommodate multiple possible instrument types (including program of record)

2. High resolution simulations of clouds, convection, and precipitation coupled with instrument 
simulators
• Large ensembles (100s of members) have already been generated for convection of multiple types and in 

multiple regions at 250 m grid spacing
• Ensembles (10s of members) also generated for extratropical cyclones at 1.33 km grid spacing
• The GEOS-5 Nature Run, while not convection resolving, can be used for coarse-grained sampling studies

3. Ensemble-based data assimilation systems at convection resolving scales
• Ensembles naturally accommodate process nonlinearity and representativeness
• Recent work has demonstrated effective assimilation of PoR – experiments can be expanded to include 

potential future observations 
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OSSEs for CCP: Study Team

• Science Impacts Team
• Univ. Utah (J. Mace, Z Xu)
• GSFC (J. Munchak, M. Grecu, I. Adams)
• JPL (D. Posselt, M. Lebsock, M. Minamide, E. Nelson, R. Storer)
• MSFC (W. Peterson, D. Cecil, P. Gatlin, T. Lang)

• Conduct OSSEs for CCP, which involve any of the elements of 
the spectrum deemed necessary to provide information to the 
architecture study

• Note that many studies have already been conducted and 
“expert elicitation” is a valid source of information
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All-sky satellite radiance DA

New assimilation techniques for all-sky DA
Adaptive observation error inflation (AOEI)
- Minamide, M., and F. Zhang, 2017: Adaptive Observation Error Inflation for Assimilating All-sky Satellite Radiance, MWR, 

145,1063-1081

Adaptive background error inflation (ABEI)
- Minamide, M., F. Zhang, 2019: An Adaptive Background Error Inflation Method for Assimilating All-sky Radiances, QJRMS, 

doi:10.1002/qj.3466.

Application to TC prediction
Real-data application on GOES-16 ABI:
- Minamide, M., F. Zhang, E.E. Clothiaux, 2018: Dynamics and Predictability of Hurricane Harvey (2017) Examined through 

Convection-permitting Ensemble Assimilation of All-sky GOES-16 Radiances, in prep for the submission
- Zhang, F., M. Minamide, X. Chen, R. G. Nystrom, S.-J. Lin and L. M. Harris, 2018: Improving Harvey forecasts with next-

generation weather satellites, BAMS IN-BOX
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Simulated GOES-R ABI
Ch8 (6.19 µm) 

brightness temperature

Colors: ensemble correlation of 
SLP to brightness temp. at ‘X’

Contours: ensemble mean SLP

Potential impacts of assimilating BTs

(Zhang, Minamide and Clothiaux, 2016, GRL)
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Similar asymmetry observed in depth of 
eyewall convection between TEMPEST-D and 
RainCube (strongest on west side and to the 
south). CYGNSS winds in inner core provide 
estimate of latent heat flux.

(below) Max surface wind 
throughout Trami lifecycle; 
(insert) Storm-centric 
composite wind tracks latent 
heat flux

NHC Storm Track

Future: exploit synergy among 
measurements to capture 
process-level interactions in TCs

Exploring Synergy Among Small-Sats: Typhoon Trami

Combination of CYGNSS, 
TEMPEST-D, and RainCube for 
Typhoon Trami 
• Surface Latent Heat Flux 

(CYGNSS)
• Spatial Cloud/Precip Context 

(TEMPEST-D)
• Cloud Vertical Structure 

(RainCube)
Future advance: rapid revisit?



Retrieval OSSE: Temporal Sampling

• Recent simulation results using a 
cloud resolving model and 
microwave brightness temperature 
simulator

• Close correspondence between 
brightness temperature difference 
and vertical velocity

• Results courtesy Philippe 
Chambon (MeteoFrance) via Ziad 
Haddad
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