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Abstract

In this paper we propose two novel deep learning-
based terrain classification methods robust to illumination
changes. The use of cameras is challenged by a variety of
factors, of most importance being the changes in illumina-
tion. On the other hand, since the temperature of various
types of terrains depends on the thermal characteristics of
the terrain, the terrain classification can be aided by utiliz-
ing the thermal information in addition to visible informa-
tion. Thus we propose 'TU-Net (Two U-Net)’ based on the
U-Net and 'TDeepLab (Two DeepLab)’ based on DeepLab,
which combine visible and thermal images and train the
network robust to illumination changes implicitly. To im-
prove the network’s learning capability, we expand the pro-
posed methods to the Siamese-based method, which explic-
itly trains the network to be robust to illumination changes.
We also investigate multiple options to fuse the visible and
thermal images at at the bottom layer, middle layer, or the
top layer of the network. We evaluate the proposed meth-
ods with a challenging new dataset consisting of visible and
thermal images, which were collected from 10 am till 5 pm
(after sunset), and we show the effectiveness of the proposed
methods.

1. Introduction

Terrain classification, as an essential component of a
broader understanding of the terrain to be traversed, is
paramount for autonomous path planning and navigation,
both on Earth and on the surfaces of other solar bodies, such
as the Moon or Mars. Terrain classification gives informa-
tion on traversability, in terms of potential risks, maximum
possible velocity, energy consumed during traverse etc. In
the context of Moon or Mars the dangers of the terrain of-
ten come from obstacles and slopes that need to be avoided,
rocky regions which potentially can damage the wheels as
they perforated one of the wheels of the Curiosity rover,
sandy regions, which can create slip, sinking, and even re-
strict ability to move further, also in case of the Spirit rover.

Most often the terrain is assessed via the on-board per-
ception system, which uses a diversity of sensors such as
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Figure 1. (a) An example RGB image at 5 pm (after sunset), (b)
manually labeled terrain types of (a), (c) an example RGB image
at 4 pm (same location with (a)), (d) IR image of (c), (e) terrain
classification result with RGB image only by U-Net, and (f) ter-
rain classification result with RGB and IR images by the proposed
Siamese TU-Net. Red dotted circles in (e) and (f) show false pos-
itives.

cameras in the visual domain, infrared cameras, LIDAR,
etc [11] [7] [6]. The use of cameras in the visual domain,
although the simplest solution, is challenged by a variety of
factors, of most importance being the changes in illumina-
tion. The RGB information returned is dependent on the
incident light, reflections from the environment, and prop-
erties of the material, which in turn may depend on other
factors. Thus, both the conventional, model based analyt-
ical approaches and the learning approaches to determine
classifiers are influenced by the changes in the ’colors’ of
the terrain regions. Figure 1 shows examples of challeng-



ing images at the same location but different time (Fig. 1
(a) is just after sunset and Fig. 1 (c) is at 4 pm (1 hour be-
fore sunset)). The image at 4 pm (Fig. 1 (¢)) is challenging
due to different colors even on a same terrain type, and its
terrain classification is strongly affected by the illumination
changes as shown in Fig. 1 (e).

The classification in sand, ballast, rugged rocky terrain,
smooth horizontal surface rocks etc can be aided by the fact
that the temperature of various types of terrains depends
on the thermal characteristics of the terrain. This infrared
information can play an important role in helping terrain
classification. Figure 1 (d) shows an example of a ther-
mal image at 4 pm, which suggests additional information
at each terrain type. Combining visible and thermal im-
ages can make the terrain classification robust to illumina-
tion changes as shown in Fig. 1 ().

There are some existing works which utilize RGB and
infrared images, such as [11] [12]. These methods focus
on semantic segmentation and classify areas whose inter-
class variations are relatively huge, such as roads, sky, trees
etc. Deep learning-based approaches brought huge im-
provements in semantic segmentation, and these methods
can be separated into 3 categories. The first is a patch-based
convolutional neural networks (CNN) [4], In this method
each pixel was classified with a patch area around it, and it
is relatively computational expensive due to the fully con-
nected layers. Second is Fully Convolutional Networks
(FCN) [8], which is much faster than the first one since FCN
removed all fully connected layers. Brandon et al. [10] uti-
lized ”DeepLab” [2], which is one of implementations of
FCN, for terrain classification and showed its feasibility in
terrain classification. In general a patch-based CNN and
FCN requires a huge dataset to train its parameters. Thus
in case that users do not have enough dataset to train FCN
from scratch, generally pre-trained parameters with public
dataset such as ImageNet [5] are used. The third one is U-
Net, which is popularly used in a medical image segmenta-
tion [3] and also was used by the winner of a satellite image
segmentation competition (Kaggle competition [1]). U-Net
has short-cut connections, which help a lot with parameter
training even given a small number of dataset.

In this paper we propose two novel deep learning-based
terrain classification methods based on U-Net and FCN
(DeepLab). The first method is referred as *TU-Net (Two
U-Net)’ based on the U-Net and the second method is as
"TDeepLab (Two Deeplab)’, which combine RGB and in-
frared images. In TU-Net and TDeepLab, we fuse visible
and thermal images at various fusion levels (i.e. bottom,
middle, and top layers). Network architectures of MU-Net
are shown in Fig. 2 and these three options mean the fu-
sion of visible and thermal images over either local infor-
mation, global information, or segmentation feature-level
information. Moreover, to realize robustness to illumina-

tion changes, we extend TU-Net and TDeepLab to Siamese-
based approaches.

To evaluate the proposed methods, we use a dataset con-
sisting of visible and thermal images as shown in Fig. 1,
which were collected every 1 hour from 10 am till 5 pm
(sunset) on Nov. 17th 2017. The images in the dataset con-
tain huge illumination variations. We annotated all images
based on visible ones with terrain types (7 categories, unla-
beled, sand, soil, rocks, bedrock, rocky terrain, and ballast).
To the best of our knowledge, this is the first dataset con-
sisting of visible and thermal images with terrain types.

The following sections are organized as follows. Section
2 introduces the proposed TU-Net and TDeepLab, and also
we explain Siamese-based TU-Net and TDeepLab. Section
3 presents experimental evaluations of the proposed method
with a new dataset, which consists of images with huge il-
lumination variations. Section 4 shows the conclusions and
future works.

2. TU-Net (Two U-Net) and TDeepLab (Two
DeepLab)
2.1. TU-Net

The three network architectures of TU-Net (TU-Net BL,
ML, and TL) are shown in Fig. 2. The architecture of the
TU-Net BL (Fig. 2 (a)) and the U-Net [9] are very sim-
ilar, the only difference between the TU-Net BL and the
U-Net is the first concatenate layer. Overall the architecture
of the U-Net (and the TU-Net BL) consists of a contracting
path (left) and an expansive path (right). Each path has re-
peated units. Output of the last unit on the contracting path
contains global information after layers of convolution and
pooling in the contracting path. In TU-Net BL, visible and
thermal images are fused at the first layer, by simply con-
catenating channels at each pixel. This means input images
into the network become 4 channel images (i.e. 3 channels
of RGB image and 1 channel of IR image).

Figure 2 (b) shows the architecture of TU-Net ML,
which has a contracting path for both visible and thermal
images and fuses two different types of images at the middle
layer. This fusion can be considered as a fusion of global in-
formation from visible and thermal images. Fused features
are input to an expansive path. Here, the concatenate layer
in the units of the expansive path receives three inputs from
the deconvolution layer, convolution layer of the contract-
ing paths of RGB image, and that of IR image.

Lastly, Fig. 2 (c) shows the architecture of TU-Net TL.
After visible and thermal images pass their own contract-
ing and expansive paths, outputs before the 1 x 1 convolu-
tion layer are fused, followed by mapping into the terrain
classes. This fusion can be considered as a feature-level fu-
sion.

The loss function Lo of all architectures is defined as
a pixel-wise soft-max over the final map, followed by the
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Figure 2. The TU-Net architectures. BL, ML, and TL shows data fusion at bottom layer, middle layer, and top layer, respectively. ”Cat”,

”C”, ”ReLU”, ”P”, and ”DC” mean “concatenate”, ”convolution
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rectified linear unit”, ’pooling”, and “deconvolution”, respectively.

Relatively thick arrows between ”Cat” and ”C” include “’bilinear up-sample”. ”N” at the final layer show the number of classes. Light blue
rectangles show units of the contracting path (contracting units). Red and orange rectangles show two different units of expansive paths

(expansive unit 1 and 2).

cross-entropy loss function, as define as follows.

N
Lop = _I_;”Izzyi'j log pij, (1)
€S j=1

where N, |S], yi;, pi; are the number of classes, the to-
tal number of pixels over images S, groud-truth distribu-
tion at each pixel, and outputted probability distribution at
each pixel, respectively. The loss function is minimized by

a stochastic gradient descent method.

To realize robustness to illumination changes, we can
train the network with a training dataset with various illu-
mination conditions. However, with this approach we ex-
pect the trained network to implicitly model illumination
changes, and thus there is no guarantee that the network is
efficiently robust to illumination changes.

2.2. TDeepLab

In this section we explain about the proposed TDeepLab.
TDeepLab is based on DeepLab v2 from ResNet-101 [2],
and it has totally 101 layers. Since this network is very
deep, we use parameters trained with ImageNet as initial
values, followed by fine-tuning with the images used in
experiments. The main units in DeepLab are "ResBlock’
which contains Residual Units and ASPP (Atrous Spatial
Pyramid Pooling) as shown in Fig. 3. In the proposed
TDeepLab, we have two architectures TDeepLab BL (Fig.
3 (a)) and TDeepLab TL (Fig. 3 (b)). TDeepLab BL in-
tegrates local features by concatenating input pair of RGB
and IR images. On the other hand TDeepLab TL combines
global features by getting summation of IR and RGB values

Output Output
segmentation segmentation
L& La

K
=t

E NI
| ASPP || ASPP |

T T
ResBlock 4 | ResBlock 4 |

T T
ResBlock 3 | ResBlock 3 |
ResBlock 2 | ResBlock 2 |
ResBlock 1 | ResBlock 1 |

Cat

[ Conv +Pool | [ Conv + Pool |

Input RGB and |
IR images Input RGB Input IR

(a) TDeepLab BL (b) TDeepLab TL
Figure 3. (a) TDeepLab BL and (b) TDeepLab TL. ResBlock con-
tains Residual Units and ASPP stands for Atrous Spatial Pyramid
Pooling.

after a softmax process.

2.3. Siamese TU-Net and Siamese TDeepLab

Siamese networks, which are reported with improved
network learning capabilities, enables to learn features of
each terrain type explicitly. Since the TU-Net has three dif-
ferent types of architectures, Siamese TU-Net also has three
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Figure 4. (a) Siamese TU-Net BL, (b) Siamese TU-Net ML, and (c) Siamese TU-Net TL.

types as shown in Fig. 4, Siamese TU-Net BL, ML, and
TL. Each architecture consists of two branches of the same
CNN, and these branches share parameters of the network.
To train the network robust to illumination changes, pairs
of visible and thermal images are prepared, which are im-
ages taken at the same location but different illuminations.
In Fig. 4 the loss functions L are shown with solid lines.
We introduce a Mean Squared Error £,sp based on global
information, which is just right before the expansing units,
to enforce the similarity measure between two images, as
shown with dotted lines. L5k is defined as

G2 > el - el

(2)
|S| 165'] 1

where ¢1 and ¢2 show different time, and C is the number
of channels. For each of three Siamese TU-Nets, the total

loss function £ are defined as follows.
1. Siamese TU-Net BL:

Lyse =

Lpr =L+ LEn+NomsE
2. Siamese TU-Net ML
Ly = EtéE + EtczE +ALysE

3. Siamese TU-Net TL
Lrp=L0,+ LB+ ) (M
Here, A is a weight and in experiments we empirically set
as 200.0. The loss function is minimized by a stochastic
gradient descent method.

Siamese TDeepLab are also defined in a similar man-
ner with Siamese TU-Net, and it has two types, Siamese
TDeepLab BL and Siamese TDeepLab TL, as shown in
Fig. 5. The loss function for both architectures is defined as
Ly =Lép +Lép

3. Experiments

In this section, we first introduce a dataset which in-
cludes visible and thermal images, followed by experimen-
tal results.
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Figure 5. (a) Siamese TDeepLab BL and (b) Siamese TDeepLab
TL.

3.1. Dataset of visible and thermal images

The dataset was collected at JPL on Nov. 17th 2017, with
a RGB camera (FLIR Grasshopper 5SM) and a thermal cam-
era (FLIR AX65). We collected images every 1 hour, from
10 am till 5 pm (sunset), totally 8 times. Total number of
images at each time is about 52 images, by changing the po-
sition of the cameras. The dataset includes challenging im-
ages such as shadows, reflection due to the Sun, and direct
sunlight into the cameras (Fig. 1 (c)). The visible and ther-
mal images are taken by different cameras, so a registration
process between cameras is necessary. After we removed
distortion with estimated camera inner parameters, we ap-
plied an affine transformation with estimated homography
matrix.

We manually annotated all images into 7 categories, un-
labeled, sand, soil, rocks, bedrock, rocky terrain, and bal-
last, as shown in Fig 6. To evaluate the proposed methods
with the new dataset, we randomly separated images at each
time into 3 datasets, 50 % for training, 25 % for evaluation,



and 25 % for test dataset. Training dataset and the eval-
uation dataset are used to train the network and to fix pa-
rameters, respectively. Test dataset is for estimating model
properties, such as pixel accuracy and mean accuracy.

|Rocky terrain" Ballast || Bedrock |

=0

Figure 6. (a) Example RGB images, and (b) manually labeled ter-
rain classes of (a).

3.2. TU-Net

We conducted the following 3 different experiments:
(Exp. 1) train, evaluate, and test with the dataset at 17:00,
which has no influence of the Sun, (Exp. 2) train, evalu-
ate, and test with all dataset from 10:00 to 17:00, and (Exp.
3) train and evaluate with dataset from 14:10 to 17:00, and
two tests: (i) test with dataset from 10:00 to 13:00 and (ii)
dataset from 14:00 to 17:00.
Exp. 1. The dataset at 17:00 is less challenging com-
pared with other dataset, since this dataset is collected af-
ter the sunset. In this experiment we applied the U-Net
with RGB images only, and the three TU-Net (BL, ML,
and TL) with RGB and IR images. Table 1 shows 4 eval-
uation metrics: pixel accuracy, mean accuracy, mean In-
tersection over Union (IoU), and frequency weighted IoU
(FW-IoU). Among these results, TU-Net (TL) shows better
performance than other networks, so in the following exper-
iments we use TU-Net (TL). From these results, we confirm
that the proposed TU-Net combining both RGB and IR im-
ages outperforms the U-Net with RGB image only.

Table 1. Comparison of U-Net with RGB images and the proposed
TU-Net (BL, ML, and TL) with RGB and IR images. Training,
evaluation and test dataset at 17:00.

Pixel Mean Mean | FW-IoU
accuracy | accuracy IoU
U-Net [9] 0.632 0.481 0.239 0.512

TU-Net(BL) || 0.678 | 0.529 | 0283 | 0.552
TU-Net (ML) || 0.684 0.500 | 0262 | 0.565
TU-Net(TL) || 0.727 | 0.497 | 0.304 | 0.592

Exp. 2. In the next experiment we use all dataset from
10:00 to 17:00 and compared the performance of TU-Net
(TL) and Siamese TU-Net (BL, ML, and TL). Table 2 shows
the 4 evaluation metrics. This shows that the Siamese TU-
Net outperforms the TU-Net, and this suggests that the
Siamese TU-Net improved the network learning capabili-
ties. Interestingly, Siamese TU-Net BL and ML perform
better than Siamese TU-Net TL, possibly due to the follow-
ing reasons. IR information in addition to RGB information

can improve the performance of the terrain classification,
but IR information without RGB information shows ambi-
guity, such as the same temperature among different terrain
types due to several factors (e.g. rock in shade shows the
same temperature with soil in Fig 1). Thus the new loss
function L1, of TU-Net TL in Fig. 4 (c), which is cal-
culated independent from RGB information, may result in
producing ambiguous information. Both Siamese TU-Net
BL and ML shows almost the same results, and in the fol-
lowing experiments we use Siamese TU-Net (ML) due to
higher pixel accuracy in ML.

Table 2. Comparison of TU-Net (TL) and Siamese TU-Net (BL,
ML, and TL). Training, evaluation, and test dataset are images
from 10:00 till 17:00.

Pixel Mean Mean | FW-IoU
accuracy | accuracy IoU

TU-Net (TL) 0.581 0.435 0.211 0.447

Siamese 0.612 0.542 | 0.307 | 0.491
TU-Net (BL)
Siamese 0.620 0.534 0.303 0.505
TU-Net (ML)
Siamese 0.563 0.517 0.257 0.463
TU-Net (TL)
Exp. 3. In the next experiment, we used the last half

dataset (from 14:00 to 17:00) to train and evaluate the net-
work, and tested with (i) the first half (from 10:00 to 13:00)
and (ii) the rest (from 14:00 to 17:00). Table 3 shows the 4
evaluation metrics. From these results, test (ii) shows better
results than test (i), since the training and evaluation were
done with the same time range.

Table 3. Results of Siamese TU-Net ML. Train and evaluate with
dataset from 14:00 to 17:00, and (i) test with dataset from 10:00 to
13:00 and (ii) dataset from 14:00 to 17:00.

Test data Pixel Mean Mean
accuracy | accuracy | loU

FW-IoU

(i) 10:00 ~ 13:00 0.633 0.461 0.279 0.531

(ii) 14:00 ~ 17:00 0.687 0.529 0.374 0.559

3.3. TDeepLab

We also conducted experiments with TDeepLab in the
same settings (Exp. 1 ~ 3).
Exp. 1. We tested DeepLab and the proposed TDeepLab
BL and TL with images at 17:00 and the results are shown
in Table 4. These results show that TDeepLab performs
much better than TU-Net (Table 1). Similar to the results
of TU-Net, TDeepLab TL shows better performance than
TDeepLab BL.
Exp. 2. In the next experiment we use all dataset from
10:00 to 17:00 and compared the performance of TDeepLab
(TL) and Siamese-based TDeepLab. The results of the 4
evaluation metrics are shown in Table 5. These results show



Table 4. Comparison of TDeepLab BL and TDeepLab TL. Train-
ing, evaluation, and test dataset are images at 17:00.

Pixel Mean Mean | FW-IoU
accuracy | accuracy | IoU
DeepLab [2] 0.871 0.708 0.599 0.781

TDeepLab (BL) || 0.859 0.772 | 0.610 | 0.792
TDeepLab (TL) || 0.911 0.820 | 0.679 | 0.848

that the use of siamese technique with DeepLab is not effec-
tive.

Table 5. Comparison of TDeepLab (TL), Siamese TDeepLab
(BL), and Siamese TDeepLab TL. Training, evaluation, and test
dataset are images at 10:00 and 17:00.

Pixel Mean Mean

FW-IoU

accuracy | accuracy | loU
TDeepLab (TL) 0.911 0.820 0.679 0.848
Siamese 0.803 0.665 0.482 0.696
TDeepLab (BL)
Siamese 0.864 0.731 0.600 0.771
TDeepLab (TL)

Exp. 3. In the last experiment we trained TDeepLab TL
with images from 14:00 to 17:00, and tested images (i) from
10:00 to 13:00 and (ii) from 14:00 to 17:00. Table 6 shows
the 4 evaluation metrics. Figure 7 shows visual comparison
between TDeepLab TL and Siamese TU-Net ML. These
results show that the evaluation metrics of TDeepLab are
much better than those of TU-Net, though small rocks in
Fig. 7 are well detected by Siamese TU-Net ML.

Table 6. Results of TDeepLab TL. Train and evaluate with dataset
from 14:00 to 17:00, and (i) test with dataset from 10:00 to 13:00
and (ii) dataset from 14:00 to 17:00.

Test data Pixel Mean Mean | FW-IoU

accuracy | accuracy | IoU

(1) 10:00 ~ 13:00 0.861 0.816 0.625 0.772

(ii) 14:00 ~ 17:00 0.886 0.786 0.653 0.806

4. Conclusions
In this paper we proposed novel deep learning-based

terrain classification methods robust to illumination vari-
ations, called TU-Net and TDeepLab and those Siamese-
based methods, can efficiently fuse visible and thermal im-
ages. Experiments with challenging dataset proved the ef-
fectiveness of the proposed methods, and TDeepLab out-
performed Siamese TU-Net.
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