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•Part 1: Planetary Cave Exploration and JPL technologies

•Part 2: TEAM-CoSTAR at DARPA Subterranean Challenge

•Part 3: Robust and risk-aware autonomy
• Information-control-based perspective

•Part 4: Conclusion

Outline



Part 1: Planetary Cave Exploration
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• More than 200 lunar and 2000 Martian cave-related features 
have been identified. 

• Titan cryovolcanos
• Most pristine, earth-like environment in the solar system, with chance of finding 

pre-biotic chemistry

• Potential environment for future human exploration
• Expected stable, UV-shielding environment and potential to act as volatile traps 

may make caves ideal habitats for future human exploration (e.g. Boston et al., 2007; Boston et al., 
2010)

• Astrobiology interest 
• Stable physio-chemical environments, may trap volatiles, enhance secondary 

mineral precipitation and microbial growth, preserve biosignatures, and provide 
record of past climate (e.g. Boston et al., 2001; Leveille and Datta, 2010; Northup et al., 2011)

• Volcanic processes 
• Petrology informs lava temperature and cooling history, would lead into insight 

into Martian magmatic processes and differentiation (e.g. Ashley et al., 2011; Kerber et al., 2016)

Cave Exploration: Scientific Value

Unaltered record of lava freezing 
sequence

Cave as extraterrestrial human habitat

Sotra Patera
cryovolcano on 

Titan
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• Representative environments for extreme terrains
• Mobility-wise
• Perception-wise
• Autonomy and communication-wise

• Various Mobility Systems at JPL for Robotic Operations in 
SubT environments
• Rappling Robots
• Climbing Robots
• Flying and racing Drones
• Modular Robots
• CoSTAR Robots

Cave Exploration: Technological Value
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Axel Extreme Terrain Rover
Lead: Issa Nesnas

Rappelling Robots

Artist concept



Axel robot on extreme terrains



Traversing Extreme Terrain
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Climbing Robots

Axel Extreme Terrain Rover
Lead: Aaron Parness
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Climbing Robots
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Flying: Mars Helicopter
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Robust Localization

Tango Project
Lead: Robert Reid
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Shapeshifter: Modular systems

Artist concept
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Shapeshifter: Modular systems



Part 2: TEAM-CoSTAR at 
DARPA Subterranean Challenge
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• Setting ambitious goals, making way for novel
approaches that might otherwise seem too risky to
pursue. [from DARPA website]
• Realizing advancing the cutting-edge technologies

Past: series of DARPA challenges

• Robotics-relevant examples: have catalyzed
advances in autonomy and changes the
course of research/funding in the U.S. (for
driving and manipulation).

• In DARPA challenge teams are large with
many institutions and collaborators.
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Objectives: to revolutionize technologies needed for exploring subterranean 
environments (tunnel, cave, lava tubes, pit craters, etc.) using a swarm of robots
Scope: only 6 teams are selected worldwide (DARPA awarded each ~$4.5M/3yrs).
Duration: 4 competitions throughout a 3 year effort
Scoring: cm-level mapping of km-long cave network/find objects
Challenges: Mobility, Perception, Autonomy, Communication

Present: Darpa Subterranean (SubT) Challenge



YEAR 2 & 3

void/submerged Caves
(multi km-long)

Very Aggressive Schedule

May

DARPA Qualification round

April

DARPA SubT Integration 

Exercise (STIX)

February

JPL Tests at Galvez Tunnel

Project Started

Sep 1, 2018
August 2019

DARPA Tunnel Competition

?

?

November

JPL Tests in Mueller Tunnel

DARPA Single-robot 

Qualification

Dec 21, 2018

A critical practice run set up 

by DARPA



CoSTAR-bots
Collaborative SubTerranean Autonomous Resilient robots

NASA-JPL, Caltech, MIT

Challenges and Thrusts:

Thrust 1: Cross-domain Mobility
Thrust 2: Extreme Navigation
Thrust 3: Resilient Communication
Thrust 4: Multi-robot Situational Awareness
Thrust 5: Verifiable Autonomy
Thrust 6: Mission planning, AI, and machine learning subt.jpl.nasa.gov



Thrust 1: Cross-domain Mobility
Thrust 2: Extreme Navigation
Thrust 3: Resilient Communication
Thrust 4: Multi-robot Situational Awareness
Thrust 5: Verifiable Autonomy
Thrust 6: Mission planning, AI, and machine learning

Mobility Challenges:
1) 8Km long SubT env
2) 60-90 min operation
3) Large climbs/drops/vertical shafts
4) Passages as narrow as 1m in 
diameter



Thrust 1: Cross-domain Mobility
Thrust 2: Extreme Navigation
Thrust 3: Resilient Communication
Thrust 4: Multi-robot Situational Awareness
Thrust 5: Verifiable Autonomy
Thrust 6: Mission planning, AI, and machine learning

Localization Challenges:
1) Dark
2) Dust/fog/smoke
3) High-dynamic range
4) Lightweight
5) Robust (handle texture-
poor environments)
6) High-frequency



Confidence tests and resiliency logic

Odometry AlgorithmsSensors

3D LIDAR
(VLP16 Lite)

Thermal/Visible
Camera

Lidar Inertial Odometry
(LIO)

Visual Inertial Odometry
(VIO)

Downward Facing 
Camera

Height Sensor
(1D LIDAR/

SONAR)

IMU 

Optical Flow

Relative Height (w.r.t. 
ground) Estimator

Resilience LogicConfidence
Test

Voting
/consistency

(estimation 
consensus?)

Filtering/
goal 

adaptation

Chi-square 
test, etc. EKF

Voting/
consistency Multiplexing Option 1

Option 2

Confidence
Test



Thrust 1: Cross-domain Mobility
Thrust 2: Extreme Navigation
Thrust 3: Resilient Communication
Thrust 4: Multi-robot Situational Awareness
Thrust 5: Verifiable Autonomy
Thrust 6: Mission planning, AI, and machine learning

Comm and perception Challenges:
1) several-km long subsurface voids
2) Multipath environment generating unpredictable 
link qualities
3) Requirement on a few seconds of delay
4) high-bandwidth for multi-agent decision making
5) Very large scale decentralized SLAM with cm-level 
accuracy and with lots of loop closures
6) lightweight



Autonomy and ML challenges:
1) Multi-agent operations for an extended 
period without human intervention in a fully 
unknown environment
2) Losing full/partial capability/health of an 
agent
3) Modeling and balancing high-level mission 
risk and low-level mobility risks
4) Semantic understanding and object detection 
in perceptually-degraded environments

Thrust 1: Cross-domain Mobility
Thrust 2: Extreme Navigation
Thrust 3: Resilient Communication
Thrust 4: Multi-robot Situational Awareness
Thrust 5: Verifiable Autonomy
Thrust 6: Mission planning, AI, and machine learning
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• Mueller tunnel
• Eagle mine

Testing location



Part 3: 
Robust and risk-aware autonomy; 

Information-control perspective
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Mission 
Planning

Learning and 
adaptation

Distributed 
Operations

FDIR

CoSTAR Autonomy Architecture

Intrinsic Autonomy

Extrinsic Autonomy

Autonomy: 
SPLAM

Motion 
Planning

LocalizationMapping

SLAP

SLAM

SMAP

• Real-world applications

• Resilience/Robustness

• Reason over uncertainty
• Accurate risk prediction

• Integrated 
perception/planning
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• Risk-aware SLAP under uncertainty

SLAP: Simultaneous Localization and Planning

Autonomy: 
SPLAM

Planning
(motion)

LocalizationMapping

SLAP

SLAM

SMAP
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action System

!"#$ = &(!", )", *")

Motion noise

Sensor noisemeasurement

state

," = ℎ(!", .")
SensorsEstimator

/"#$ = 0(/", )"1$, ,")

Policy (controller)

Information-state (Belief) 

Joint Inference and Control
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• Cost per stage                    [captures the desired behavior]

• Cost-to-go:

• POMDP (Partially-Observable Markov Decision Process):

• Constraints set!

Stochastic Control with Imperfect Measurements

intractable over 
continuous spaces
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Traditional POMDPs covariance

Gaussian 
belief

mean

1) Tree (grows exp.)
2) No feedback
3) Simple constraint

State space

Belief space
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Belief space

Feedback-based Information Roadmaps covariance

Gaussian 
belief

mean

Graph in belief space; Feedback-based information RoadMap (FIRM)

State space

1) Graph (grows linearly)
2) Feedback (switching controller) -> 

robust
3) Constraints

Agha, Chakravorty Amato, “FIRM: Sampling-based Feedback Motion Planning Under Motion Uncertainty and Imperfect Measurements,” IJRR’14.
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Offline graph construction
Landmarks

FIRM nodes

A branch of feedback tree

Obstacles
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Reduction in 
comp. complexity 

Offline graph construction
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• Local rollout-based optimization

• Bi-directional value learning

• Decentralized POMDPs

FIRM++

Omidshafiei, Agha, et al, “Decentralized Control of Partially Observable 
Markov Decision Processes using Belief Space Macro-
actions,” IJRR’2017.

Agha, et al.,“SLAP: Simultaneous Localization and Planning for 
Physical Mobile Robots via Enabling Dynamic Replanning in 
Belief Space,” TRO 2018 .

Sung, Agha, et al.,“Bi-directional value learning for risk-aware 
planning in stochastic systems,” Under review.
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• Risk-aware SMAP under uncertainty

SMAP: Simultaneous Mapping and Planning

Autonomy: 
SPLAM

Planning
(motion)

LocalizationMapping

SLAP

SLAM

SMAP
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• A planning-oriented representation
of the environment

Confidence-rich mapping

• Voxel independence assumption
• Unreliable representation of confidenceAgha, Heiden, Hausman, Sukhatme, “Confidence-rich 3D Grid Mapping,” IJRR 2019.
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Sensor-Cause Model

!" # $% = Pr )*, ,* $% = -.* ∏012
*342 1 − -.7 0,8
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Sensor-Cause Model
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Results on DataSets

Agha, Heiden, Hausman, Sukhatme, “Confidence-rich 3D Grid 
Mapping,” IJRR 2019.
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• Go from start to goal
• While minimizing time and 
• Collision probability

SMAP: induced behavior

???

goal
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• Without SMAP
• Without considering 

uncertainty and 
perceptual capabilities

• Fast and risky

SMAP: induced behavior

???

goal
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• Without SMAP

• Safe but slow

SMAP: induced behavior

???

goal
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• Risk-aware and fast

• Predict map evolution
• Incorporate predicted

sensory measurements
into planning

SMAP

???

goal

Heiden, Hausman, Sukhatme, Agha, “Planning High-speed Safe Trajectories in Confidence-rich Map,” IROS 2017.

Ris$ = & ' ( − *+ ' (
Reduction in re-planning stops up to 70%
Speed-up in traversal time up to 34%
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• Exploring planetary caves offers high-value science 
return.

• CoSTAR
• Lots of challenges and lots of research opportunities

• Resilience/Robustness

Conclusion

More accurate risk evaluation
Integrated perception/planning               Information control



Ali  Agha, UCLA, Feb 7th, 2019 Autonomous Robotic Exploration of Subsurface Voids 47

Thank you!


