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Deep Space Navigation Challenges

Operating independent of Earth requires an on-board
navigation system to answer the fundamental
question of where am 1?

The principal navigation challenge in lunar orbit is to \"
continuously maintain knowledge of the position and
velocity to enable design and execution of orbit
maintenance maneuvers.

NASA is pursuing an on-board navigation
system that works anywhere in the solar
system. It's called DPS-Navigator




What is the Deep Space Positioning System (DPS) - Navigator

A self-contained autonomous
navigation hardware and

software system that provides
spacecraft on-board navigation
throughout the solar system.




How Does DPS-Navigator Work?

In the Earth-Moon vicinity, DPS-
Navigator optically observes
communications or GPS satellites.
Closer to the Moon, lunar landmarks
serve as optical beacons.

On-board position/velocity are
determined and orbital maneuvers
computed to maintain the spacecraft
orbit.




The Implementation Problem

AutoNav has flown three times (Deep Space 1, Stardust, Deep Impact)
Each flight was a custom application requiring full test and validation activities

Each flight had moderate to severe software integration “issues”

Substantial cost and risk was incurred by a unique flight-by-flight instantiation




The DPS-Navigator Solution:

Self-contained like a star tracker or GNSS receiver:

Small (25 x 12 x 12 cm)

Light-weight (< 5 kg)

Low power (<12 W)

Low data requirements (< 50 MB per day)

Common interfaces to reduce/eliminate recurring test and verification activities
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Application to Lunar Gateway




How much DSN radiometric or on-board
optical tracking is required for operations in

the lunar Gateway NRHO?
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Orbit period: 6.5 days
Perilune radius: 3200 km
Apolune radius: 70,000 km

Nearly stable with inexpensive
orbit maintenance costs

Inexpensive transfers from/to
Earth and other Lunar orbits




No Crew

Orbit Determination Results

DSN Tracking Only: 3 Passes/Week
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With Crew

Orbit Determination Results

DSN Tracking Only: 3 Passes/Week
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With Crew

Orbit Determination Results

DSN Tracking Only: Near-Continuous During Crewed Operations
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Lunar Landmarks Global Distributed

* Landmarks

Camera FOV
mLow-Res
mMedium-Res
mHigh-Res



Orbit Determination Results: No Crew
On-board Optical Only: Twice per day
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Conclusions

An optical only version of DPS-Navigator, relying exclusively
on lunar landmark tracking from the baseline NRHO
Gateway orbit, can meet existing orbit knowledge
requirements needed to design and execute orbit
maintenance maneuvers.

Thus, an alternative to traditional Earth-based radiometric
techniques would be available to free Earth tracking stations
and ground personnel for other support.




Future Uses
Enceladus is offering free (dirty) water samples for any mission that can navigate the plumes

A mission to
Enceladus to search
for potential life-
habitats would need
precision in situ
navigation to
maintain low-altitude
periodic orbits
around Saturn for
multiple sampling
flyby passes through
the plumes
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Backup Material




Orbit Determination Performance Drivers

DSN tracking schedule

Attitude Control System (ACS) desaturation errors and frequency

Orbit Maintenance Maneuver (OMM) errors and frequency
Non-gravitational errors from crew activity (PSA and waste water venting)
Solar pressure modeling uncertainties




Orbit Determination Approach
Perform linear covariance orbit determination study
Assume NRHO 9:2 resonant orbit

Include errors for:
ACS wheel desaturations
OMMs
Stochastic non-gravs due to crew activities

Solar radiation pressure assuming a nominal near-tail-to-sun solar pressure equilibrium
attitude

Evaluate performance with various amounts of DSN tracking.
Continuous (best case)

Three, 6-hour tracks per week (typical)




Orbit Determination Assumptions (1/2)
Inputs

Uncrewed mass: 7000 kg (PPE Only)
Crewed mass: 42000 kg (PPE+SmallStack+QOrion)
Gravity:

Point mass: Earth, Sun & Jupiter
Lunar oblateness (GRAIL, 50x50)

S-Band DSN radiometric tracking uncertainties:
Doppler: 1.0 mm/s (15), Every 60 seconds
Range: 1 m (1c), Every 5 minutes




Orbit Determination Analysis Assumptions (2/2)
Inputs

ACS desaturations (uncrewed: once per orbit at ~20° before apolune,
crewed: once per 140 min)

Uncertainty: 1 cm/s all axes, (1oc)

OMM near apolune
Uncertainty: 2 cm/s all axes, (1c)

Stochastic non-grav accelerations from crew activities (a.k.a FLAK)
Pressure Swing Adsorption: 7.7 x 10-19 km/s?, (15), T = 623.9 seconds
Waste water venting: 1.0 x 10-1° km/s?, (1), t = 3 hours

SRP Model: solar panels: 200m? x 2, PPE bus: 5m diameter
Uncertainty: 10% (1o)




