
UAVSAR Real-Time Embedded GPU Processor
Brian P. Hawkins and Wayne Tung
Radar Science and Engineering Section

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive, Pasadena, CA 91109

Abstract—Synthetic aperture radar (SAR) can provide high-
resolution imagery regardless of cloud cover or lighting condi-
tions. These qualities make SAR potentially well-suited for in-
forming response efforts to natural and man-made disasters, but
such applications require data products with minimal latency. To
meet this challenge, we implemented a real-time SAR processor
capable of producing 10 m imagery using an NVIDIA Jetson TX2
embedded GPU module. With its low mass (87 g module) and
power consumption under 8 W, the system also holds promise
for spaceborne applications.

Index Terms—synthetic aperture radar (SAR), real-time pro-
cessing, GPU, UAVSAR

I. INTRODUCTION

NASA’s Uninhabited Aerial Vehicle Synthetic Aperture
Radar (UAVSAR) system has operated since 2009 and pro-
vided a variety of interesting measurements of natural and
man-made hazards including oil spills [1], hurricanes [2],
earthquakes [3] and wildfires [4]. These types of disasters
result in substantial loss of life and property, and using SAR
to understand their risks and impacts is a worthy endeavor.
In addition, SAR imagery and derived products have the
potential to help mitigate these impacts by providing increased
situational awareness to the first responders who need to
decide what resources to deploy and where during a disaster.
However, in these scenarios the utility of remote sensing data
diminishes with each passing hour, and time spent downlinking
and processing the data must be minimized.

Graphics Processing Unit (GPU) hardware commercially
developed for accelerating 3D computer graphics are increas-
ingly being used for general purpose tasks, including SAR
image formation [5], [6]. Recent GPU hardware for portable
gaming and autonomous vehicle applications combines the
massive parallelism and data throughput typical of GPU
accelerator cards into a package with small form-factor and
low power consumption. These developments have generated
interest for spaceborne applications where mass and power are
severely constrained, and studies of GPU radiation tolerance
are ongoing [7], [8]. A SAR mission in particular would
benefit immensely from the reduced downlink capacity needed
for multilooked imagery compared to unprocessed raw data.
The software development for GPUs is also much simpler than
for FPGA-based on-board processors [9].

This work was conducted under contract with the National Aeronautics and
Space Administration at the Jet Propulsion Laboratory, California Institute of
Technology.

In this paper, we describe the implementation of a SAR
processor on an embedded GPU system. We demonstrate real-
time throughput performance, low power consumption, and
our experience providing imagery to support disaster recovery
efforts during Hurricane Florence.

II. PROCESSOR IMPLEMENTATION

The on-board processor was implemented on an NVIDIA
Jetson TX2 system-on-module [10]. The 87 g module con-
tains a 256-core GPU, a heterogeneous 6-core ARMv8 CPU
complex, 8 GB of memory, gigabit Ethernet, and 32 GB flash
storage. For this task we simply utilized the development kit
from NVIDIA that provides a carrier board with standard
connectors and an AC power interface, show in Fig. 1. The
box was mounted on the electronics rack housing the radar
operator workstation inside the cabin of the Gulfstream III
aircraft, where it was connected to 120 V AC power and a
10 Gb Ethernet switch.

Fig. 1. NVIDIA Jetson TX2 development kit inside enclosure, lid removed.

The development and operating environment of the board is
a familiar 64-bit Linux operating system based on the Ubuntu
distribution. This allows great flexibility in the software im-
plementation, as processor components could be reused from
our existing ground processing system with minimal modi-
fications, and new components could be implemented with
whatever libraries and tools are most suitable.

The overall data flow is illustrated in Fig. 2. The digital
radar data enters the system via a UDP socket on the network
interface. Simple C programs split off the telemetry, demux
the channels, zero fill missing samples, and decode the block
floating point data format.



Radar ADC

First?

Range
Compress

Azimuth
Compress

Multilook

Decode
& Fill

Disk
Web

Server
Web
Client

Initialize

Jetson TX2

GPU

UDP

HTTP

FIFO

Fig. 2. Processor block diagram. The system uses standard network interfaces
for IO. It performs a variety of tasks, and only the most intense are offloaded
to the GPU.

The signal processing blocks were adapted from the
UAVSAR laptop-based quicklook processor and are deliber-
ately extremely simple. An initialization step (implemented in
Python) reads the telemetry, determines all processing param-
eters and buffer sizes, and compiles the range and azimuth
compression modules. Range compression (implemented in
CUDA) simply Fourier transforms the raw data d, multiplies
by a frequency-domain matched filter Hr computed in the
initialization step, and inverse transforms to obtain the result
src,

src = F−1
r {Fr{d}Hr} . (1)

The Fourier transforms F{·} are implemented with the cuFFT
library provided by NVIDIA, and they execute on the GPU.

Azimuth compression proceeds in a similar fashion but
involves some subtleties worth pointing out. First, no range
cell migration (RCM) correction is performed, so the azimuth
resolution is limited such that the RCM will not exceed half a
range bin. Second, the Doppler centroid is fixed at zero which
is tenable for UAVSAR due to the real-time electronic steering
of the L-band phased array antenna. With these assumptions,
the azimuth reference function Hx(r) does not vary in time
and is only computed once in the initialization step as

Hx(r) = F
{
w(x) r2 exp

(
j
2π

λr
x2

)}
(2)

where w(x) is a Kaiser window, r is the range associated
with the given fast-time bin, λ is the center wavelength, and x
is the azimuth coordinate (UAVSAR varies its pulse interval

as needed to maintain constant azimuth ground spacing). The
processor then must only compute the FFT convolution

sac = F−1
x {Fx{src}Hx(r)} (3)

on the data stream to obtain the azimuth compressed data
sac. Moreover, since Hx(r) is constant in time, the partially
compressed portions of adjacent blocks are added together to
achieve maximal throughput.

Following azimuth compression, simple C and Python pro-
grams perform the power detection and spatial averaging
(multilooking), scale to 8 bits, segment the data, and write the
segments to disk as PNG format images. Messages written
to a FIFO file notify a web server on the device when new
images are available. The web server (implemented in NodeJS)
provides a basic web interface and pushes images to connected
clients over a WebSocket. Thus anyone on the aircraft can view
the imagery as it becomes available using just a networked
device with a modern web browser. Finally, the imagery is
geocoded and rendered in GeoTIFF format during the time
between data takes.

Each executable is designed to read the data stream from
stdin and write to stdout, and they are all connected in a
long shell pipeline. We thus utilize the operating system to
implement task parallelism in a simple and efficient way. The
processing pipeline is contained in a single shell script that
is registered as a Linux systemd service, as is the web
server, and systemd takes care of starting up the services and
keeping them running. The overall system is thus completely
automated, modular, and highly robust.

III. RESULTS

The processor described above was integrated with the
UAVSAR system in 2018. Ground testing and flight exper-
iments verified real-time processing of 25 MB/s raw L-band
data into continuous stripmap imagery at 10 m postings, shown
in Fig. 3. During data collections, GPU utilization as reported
by the gtop program was under 50%. A consumer-grade
power meter at the AC input measured power consumption
of no more than 7.7 W during operation.

Fig. 3. Processor running on-board the NASA Gulfstream-III aircraft
UAVSAR platform. Real-time imagery was viewed on a laptop web browser.

The resulting images are of intermediate quality: much
better than unfocused SAR but obviously not as good as



the usual UAVSAR products processed with motion com-
pensation, an accurate Doppler model, full Doppler band-
width, etc. However, the on-board processor was used during
the UAVSAR mission in support of the Hurricane Florence
disaster response where the real-time SAR products were
distributed to federal and local agencies. An example real-time
image of a flooded area in South Carolina, USA, is shown
in Fig. 4. Image interpretation was somewhat complicated by
the presence of inundated vegetation with bright backscatter in
addition to open water with low backscatter. Polarimetric and
interferometric measurements ultimately proved most sensitive
but were not available in real-time.

Fig. 4. On-board processed image of Pee Dee River in South Carolina, USA,
with zoom of red box inset top-right. The area was subject to severe flooding
following Hurricane Florence.

IV. CONCLUSIONS AND FUTURE WORK

An on-board SAR processor was implemented on an embed-
ded GPU device with low mass and low power consumption.
It demonstrated the ability to produce 10 m imagery in real-
time during an emergency situation. Since then it has become
a routine part of UAVSAR operations and monitoring of
instrument health. The authors recently acquired the more
capable NVIDIA Jetson AGX system and look forward to
improving the image formation algorithms and implementing
multi-channel processing, which could enable real-time polari-
metric measurements and Ka-band products.

REFERENCES

[1] S. Skrunes, C. Brekke, C. E. Jones, M. M. Espeseth, and B. Holt, “Effect
of wind direction and incidence angle on polarimetric SAR observations
of slicked and unslicked sea surfaces,” Remote Sens. Env., vol. 213, pp.
73–91, Aug. 2018.

[2] A. Molthan. (2017) NASA Earth Science Disasters Program response
activities during hurricanes Harvey, Irma and Maria. [Online]. Available:
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20170012367.pdf

[3] K. W. Hudnut, S. Wei, A. Donnellan, E. J. Fielding, R. W. Graves,
D. V. Helmberger, Z. Liu, J. W. Parker, and J. A. Treiman, “Extremely
shallow extensional faulting near geothermal fields,” AGU Fall Meeting
Abstracts, pp. S33D–2462, Dec. 2013.

[4] A. Donnellan, J. Parker, C. Milliner, T. G. Farr, M. Glasscoe, Y. Lou,
Y. Zheng, and B. Hawkins, “UAVSAR and optical analysis of the thomas
fire scar and montecito debris flows: Case study of methods for disaster
response using remote sensing products,” Earth and Space Science,
vol. 5, no. 7, pp. 339–347, Jul. 2018.

[5] M. Blom and P. Follo, “VHF SAR image formation implemented on a
GPU,” in Proc. IGARSS, vol. 5, Jul. 2005, pp. 3352–3356.

[6] T. D. R. Hartley, A. R. Fasih, C. A. Berdanier, F. Ozguner, and U. V.
Catalyurek, “Investigating the use of GPU-accelerated nodes for SAR
image formation,” in 2009 IEEE Int. Conf. Cluster Comp., Aug. 2009,
pp. 1–8.

[7] D. A. G. de Oliveira, L. L. Pilla, T. Santini, and P. Rech, “Evaluation
and mitigation of radiation-induced soft errors in graphics processing
units,” IEEE Trans. Comput., vol. 65, no. 3, pp. 791–804, Mar. 2016.

[8] R. L. Davidson and C. P. Bridges, “Error resilient GPU accelerated
image processing for space applications,” IEEE Trans. Parallel Distrib.
Syst., vol. 29, no. 9, pp. 1990–2003, Sep. 2018.

[9] Y. Lou, D. Clark, P. Marks, R. J. Muellerschoen, and C. C. Wang,
“Onboard radar processor development for rapid response to natural
hazards,” IEEE J-STARS, vol. 9, no. 6, pp. 2770–2776, Jun. 2016.

[10] (2019) NVIDIA Corp. [Online]. Available:
https://developer.nvidia.com/embedded/develop/hardware


