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Ocean surface topography computed from
temperature and salinity data collected in the
ocean (relative 1000 db surface).

Wyrtki (1979)




Examples of Conventional Altimetr

Comparison of TOPEX/Poseidon SSH to the dynamic height estimated by

{ ed Echo Sounder observations
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SWOT oceanographic objectives
he prlmary oceanographlc objectives of the SWOT mission are to
R, R ale circulation

termined from the ocean surface topography at spatial resolutions
of 15 km (for 68 % of the ocean).
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datlon valldate the measurement of SSH to
avenumber spectrum requirement
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GPS mooring watch circle
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Monterey Bay: GPS Buoy vs. Tide Gauge (30 km)

—

Bz ed on 6-min averages of 1-Hz SSH estimates
\Variance of long-period differences reduced by 80% vith simple geoid correction from DTU13 MSS
d signals (unresolved from MSS) remain in corrected time series.
fferences also show high-frequency content (~2 cm) and differential tides (~1 cm).

~ Without Geoid Correction
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_ After Correcting for Geoid Using DTU13 MSS
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Comparisons of GPS, Tide gauge, and BPR
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A strawman scenario of the post-Iau;{
ocean in-situ observing system

come of the pre-launch experiment, the post-
aign might include:

-
tk array of GPS buoys for the geodetic objective;

.o’

nsional array of hydrographic sensors (gliders,
walkers, possibly some deep CTDs, or combination of them),

==shown on the right (a strawman), which is linking the mission’s A sensor

— N

:?;';’-'Ewia'[bTan to the development of the post-launch science
~— ~ campaign.

Hydrographic

- The minimum length of the GPS array needs to be ~ 110 km,
according to a modeling study of the long-wavelength calval by
the SWOT nadir altimeter (Jinbo Wang’s presentation later)
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tent of heupp'er ocean s-an'w.pli'ng required to represent the full-depth
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J- fhty of station-keeping gliders?
rmance of the faster wire-walker vs station-keeping gliders in sampling

-
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= eE'pFCTD mooring (reaching 1700 m with ~30 CTDs), addressing #1,2,4
———— USbuoy mooring, addressing #1
-~ ABPR mooring addressing #1
A wire-walker mooring addressing #4

The gliders will address #3,4.
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Model simulation of the glider performance
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objectives by

Sensors

B
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, '-f* Jght replace gllders with

*“a ers.

vility below 500 m is significant, we
-I:‘f'~e add CTDs below the wirewalker.
oves able to meet the requirement for
——valic ,- I “the SSH spectrum, a GPS sensor will
Tﬁbup’ced on top of the wirewalker.

wirewalker

CTDs
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SS H mlght have significant residual errors from the
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ly amic height estimated from the glider might suffer
' sampling errors due to the slow dive.

~
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th issues will be addressed by the next experiment being
planned for the California calval site.
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Sea Level Anomaly from 6-minute GPS Buoy Data:

~ Daisy Bank (2016) vs. Monterey Bay (2017)

Dalsy Bank Tlme Serles
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Monterey Bay Time Series
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_1 O - Buoy Captures Significant Geoid Undulations
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Geodetic Objectives by an array of GPS buoys

Oys acting as open ocean tide gauges —

s anchored to the bottom to provide time series at a fixed location.
nse SWOT sampling allows collocation between SWOT and buoys.

he SWOT SSH accuracy on the 7.5 km x 7.5 km nominal grids, the in-
_'surement must meet 0.4 cm (rms) accuracy.

| 'i}e signals are band-limited and can be mostly removed by low-pass
u__;'; ing.

*=The noise floor leads to errors less than 1 cm
‘“‘.(Hms) at periods >1 min, or, ~ 0.25 cm at >15 min
~— "+ Minimal MSS error over the scale of the watch

circle (~ 4 km radius).
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Residual high-frequency variability after tamporal smo‘athing
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Buoy: SSH Variability vs. Width of Boxcar Window
(SSH corrected for tides and IB)
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High-resolution SSH by airborne’laser
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Fig. 6: SSHA estimated from two MASS lidar passes (“northbound” and “southbound”) over the
same Jason-l track (see insert). Note that the satellite pass occurred in the middle of the
southbound lidar pass (black).
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