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Overview

• TORQ system
• Background

• Convex optimization
• Differential flatness
• Existing quadrotor trajectory optimization

• Lossless convexification
• Implementation
• Results
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This research was carried out at the Jet Propulsion Laboratory, California Institute of 
Technology, and was sponsored by the University of Sydney' Industry Placement 

Scholarship and the National Aeronautics and Space Administration.
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TORQ System
Quadrotor
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Rigter, 2018 [1]
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TORQ System
Ground Control Station
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Convex optimisation

minimise
!

𝑓(𝑥)
such that 𝑔" 𝑥 ≤ 𝑏" , 𝑖 = 1,… ,𝑁

𝐴𝑥 = 𝑏
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𝑔! 𝑥 ≤ 𝑏! forms a convex set𝑓 𝑥 , 𝑔! 𝑥 are convex functions

𝑥"

𝑥#
Convex

𝑥"

𝑥#
Non-convex

𝑓(𝑥)

𝑥
Convex

𝑓(𝑥)

𝑥
Non-convex
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Differential flatness
Quadrotor transform

Position
Yaw

𝒓, 𝒓̇, 𝒓̈, 𝒓⃛, 𝒓 )

𝜓, 𝜓̇, 𝜓̈
⇔ 𝒓, 𝒓̇,*𝑅+, 𝝎̇

𝑇, 𝝉
State vector
Control inputs

• A sufficiently smooth path in space and yaw can be 
transformed to a set of dynamically feasible states and control 
inputs

• Transforms exist that include rotor drag
• Singularities

1. Zero thrust – set minimum thrust limit
2. ±90∘ pitch – run alternate coordinates and switch near 

singularity
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Flat outputs Trajectory and controls
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Existing planning algorithms
UNConstrained Optimiser (UNCO)

• Minimum snap trajectories
• Piecewise polynomial segments 

through predefined waypoints
• Inner loop: Unconstrained 

quadratic programming problem
• Outer loop: Segment time 

gradient descent
• Fast, smooth and robust
• No consideration of thrust/RPM 

constraints
• No treatment of obstacles in 

optimisation
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Bry et. al., 2015 [2]
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Existing planning algorithms
Tube And Cube Optimisation (TACO)

• Similar formulation to UNCO
• Additional convex cube 

constraints between 
waypoints

• Convex optimisation problem
• “Slow and safe”
• No consideration of 

thrust/RPM constraints
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Campos-Macias et. al., 2017 [3]
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Existing planning algorithms

• Optimisation of Legendre 
polynomials

• Optimisation in a subspace 
of coefficients that enforce 
boundary/continuity 
conditions

• Gradient descent approach
• Obstacle collisions treated 

as part of the cost function
• Ideal for cluttered 

environments

Admissible Subspace TRajectory Optimiser (ASTRO)
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Morrell, 2018 [4]
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Motivation

• Perform aggressive 
maneuvers with inverted 
flight

• Need consideration of 
min/max RPM limits in 
trajectory optimisation

• Minimum thrust constraint 
creates non-convex 
optimisation problem
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Gavrilets et. al., 2004 [5]
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Lossless convexification
Non-convex optimal control problem

minimise
#$, %%

9
&

#$
‖𝑇' 𝑡 ‖ d𝑡

such that 0 < 𝜌( ≤ 𝑇' 𝑡 ≤ 𝜌)
dynamics are satisCied
boundary conditions are satisCied
other constraints are satisCied

• Designed for planetary landing
• Convex cost function
• Convex “other” constraints
• Non-convex thrust constraint
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Açıkmeşe and Ploen, 2007 [6]
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Lossless convexification
Convex optimal control problem
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minimise
#$,*, %%

9
&

#$
Γ(t) d𝑡

such that 0 < 𝜌( ≤ Γ 𝑡 ≤ 𝜌)
𝑇' 𝑡 ≤ Γ(𝑡)
dynamics are satisCied
boundary conditions are satisCied
other constraints are satisCied

• Introduce slack variable Γ(𝑡)
• Search space is now convex
• Can show 𝑇'∗ 𝑡 = Γ∗(𝑡)

Açıkmeşe and Ploen, 2007 [6]
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Implementation
Approach
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Initial final time, 𝑡&'

RPM 
Check

Differential 
flatness 

transform

Segment ratios, (!
)"

Thrust limits

Lossless 
convexification
CVX/SeDuMi

Polynomial 
coefficients, 𝒑
Position, 𝒓(𝑡)
Yaw, 𝜓(𝑡)

Thrust, 𝑇(𝑡)
Torque, 𝝉(𝑡)

Bisection search 
update step
fminbnd

Cost
𝐽 = 𝐽* + 𝐽)" + 𝐽+,-

Final time, 𝑡&

Outer loop
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Implementation
Convex optimisation problem

minimise
*, 𝒙, -

9
&

#$
𝑐*Γ)(t) + 𝑐. 𝒙 / 𝑡

)
d𝑡

such that 0 <
𝛼𝑇min
𝑚

)
≤ Γ 𝑡 ≤

𝑇max
𝑚

)

𝑥̈) + 𝑦̈) + 𝑧̈ + 𝑔 ) ≤ Γ(𝑡)

• Optimal	trajectory:	𝑥̈) + 𝑦̈) + 𝑧̈ + 𝑔 ) = Γ(𝑡)
• Minimum	thrust	and	snap	trajectory
• Lossless	convexification	enforces	thrust	constraint
• Multiple	segments	with	free	or	fixed	boundary	conditions
• Solved	with	CVX/SeDuMi
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Implementation
Derivative optimisation – inner loop
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𝐴𝒑 = 𝒃
0

𝒃 = 𝐶 𝒃.
𝒃,𝒃, =

𝑏,/
𝑏,0
𝑏,"
𝑏,#

Free derivatives

𝒃. =
𝒙'
𝑥#
𝒙"

Fixed derivatives Permutation Mapping/continuity

𝑥!
"

𝑥!
𝑥̈!
𝑥̇!
𝑥!

𝑥#
"

𝑥#
𝑥̈#
𝑥̇#
𝑥#

𝑏$"
𝑏$%
𝑏$#
𝑏$&
𝑥&

𝑥" 𝑡 = :
12'

3

𝑝"1 𝑡 − 𝜏# 1𝑥# 𝑡 = :
12'

3

𝑝#1𝑡1

Hover

Waypoint

𝐽 = min
𝒑
𝒑5 𝑐6𝑄6 + 𝑐7𝑄7 𝒑 = min

𝒃#

𝒃.
𝒃,

5
𝐶𝐴95 𝑐6𝑄6 + 𝑐7𝑄7 𝐴9#𝐶5

𝒃.
𝒃,

Hover
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Implementation
Thrust mixing and saturation

Static:
𝑇
𝜏!
𝜏5
𝜏6

=

𝑐%( 𝑐%) 𝑐%7 𝑐%/
−𝑐%(𝑙 𝑐%)𝑙 𝑐%7𝑙 −𝑐%/𝑙
−𝑐%(𝑙 𝑐%)𝑙 −𝑐%7𝑙 𝑐%/𝑙
−𝑐8 −𝑐8 𝑐8 𝑐8

𝜔()

𝜔))

𝜔7)

𝜔/)

Dynamic:
𝑇" = 𝑘(𝜔) + 𝑘)𝜔 𝑣6 + 𝑣"

𝑇" = 𝑘/𝑣" 𝑣6 + 𝑣" ) + 𝑣!5)

𝑐%" =
𝑇"
𝜔)

• Saturation sacrifices yaw control to meet RPM limits
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Results
Half flip – Min-snap formulation

22 September 2020 Lossless Convexification for Quadrotors 17

𝑐7 = 1, 𝑐6 = 1: Feasible
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𝑐7 = 1, 𝑐6 = 1: Feasible

Results
Half flip – Min-snap formulation

22 September 2020 Lossless Convexification for Quadrotors 18

𝑐7 = 1, 𝑐6 = 0: Infeasible



jpl.nasa.gov

𝑐7 = 1, 𝑐6 = 1: Feasible

Results
Half flip – Min-snap formulation
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𝑐7 = 0, 𝑐6 = 1: Feasible, not converged
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Results
Constrained Split-S
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Snap constrained

6 m s-1

Floating

3 m s-1
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Results
Split-S - UNCO
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Fixed Position

3 m s-1

6 m s-1

Floating
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Results
Split-S – Lossless convexification – Low slack weighting
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Results
Split-S – Lossless convexification – High slack weighting
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Results
Timing
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Key outcomes

• Flexible Matlab implementation of unconstrained and lossless 
convexification polynomial trajectory optimisation routines

• Lossless convexification is promising as an efficient 
optimisation routine that accounts for input feasibility

• Combined minimum snap and minimum control input 
trajectories successful

• A Split-S appears to be “human optimal”

22 September 2020 Lossless Convexification for Quadrotors 25
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Next steps

• Hardware tests with upgraded flight stack
• Segment time optimisation (in progress)
• Combined algorithm

1. Try solution with UNCO
2. If non-feasible attempt lossless convexification

• Obstacle avoidance constraints
• Iterative Regional Inflation by Semi-definite programming (IRIS)
• TACO cubic constraints
• Cylindrical regions
• Mixed integer programming

22 September 2020 Lossless Convexification for Quadrotors 26
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Implementation
Polynomial form

𝜎9 𝑡 = 𝜙&9 𝑡 +j
:;(

<

𝑎:9𝜙:9(𝑡)
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Snap constrained

Position constrained

Zero at segment end
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Implementation
Discretisation – inner loop

minimise
𝒂

j
";(

>

𝐴*𝒂 "

such that
𝛼𝑇min
𝑚

)
≤ 𝐴*𝒂 + 𝚪𝟎 ≤

𝑇max
𝑚

)

(𝐴!̈𝒂 + 𝒙̈&))+(𝐴5̈𝒂 + 𝒚̈&)) + (𝐴6̈𝒂 + 𝒛̈&)) ≤ Γ(𝑡)
𝐴@𝒂 = 𝒃@&

where 𝜎9 𝑡" = 𝜙&9 𝑡" +j
:;(

<

𝑎:9𝜙:9(𝑡") = 𝝈𝟎𝒊 𝑡" + 𝐴B"(𝑡")𝒂
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Implementation
Polynomial forms

𝜎9 𝑡 = 𝜙&9 𝑡 +j
:;(

<

𝑎:9𝜙:9(𝑡)

𝜙&9 𝑡 = j
C;&

D:;<

𝑏C 𝑡 − 𝜉9E( C +j
C;&

D:

𝑏D:;<F(FC 𝑡 − 𝜉9E(
D:;<F( 𝑡 − 𝜉9 C

𝜙:9 𝑡 = 𝑡:E( 𝑡 − 𝜉9E( D:;<F( 𝑡 − 𝜉9 D: for 𝑗 = 1,… , 𝑘

𝑘 = 𝐾 − 𝑝9E( + 𝑝9

𝜉9 =j
"

9

𝜏"
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Implementation
Derivative optimisation – inner loop

minimise
𝒃=

𝐽 = 𝒃H
𝒃@

%
𝐶𝐴E% 𝑐.𝑄. + 𝑐*𝑄* 𝐴E(𝐶%

𝒃H
𝒃@

such that
𝛼𝑇min
𝑚

)
≤ 𝐴*𝒃@ + 𝚪𝟎 ≤

𝑇max
𝑚

)

(𝐴!̈𝒃@ + 𝒙̈&))+(𝐴5̈𝒃@ + 𝒚̈&)) + (𝐴6̈𝒃@ + 𝒛̈&))
≤ 𝐴*𝒃@ + 𝚪𝟎

where 𝜎9 𝑡 = j
C;&

>

𝑝9C 𝑡 −j
&

9

𝜏"

C

Polynomial form

𝐴𝒑 = 𝐶 𝒃H
𝒃@
0

Derivative/coefCicient mapping
and continuity
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Differential flatness
Overview

For a differentially flat system:
𝑥̇ = 𝑓 𝑥, 𝑢

we can define a set of flat outputs 𝜎(𝑡) such that:
𝑥 𝑡 = 𝑥 𝜎, 𝜎̇, 𝜎̈, … , 𝜎 D

𝑢 𝑡 = 𝑢 𝜎, 𝜎̇, 𝜎̈, … , 𝜎 D

• We can express states and controls as a function of the flat 
outputs and derivatives

• Any 𝑝 times differentiable trajectory in the flat outputs can be 
transformed into a dynamically feasible trajectory and controls

• Allows planning in flat output space
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Existing planning algorithms
Minimum snap polynomial trajectories

Algorithm Approach Obstacles Use case

UNConstrained
Optimiser
(UNCO)

Direct matrix solution 
given segment times
Outer loop gradient 
descent for time

No explicit
treatment

Fast, smooth 
trajectories

Tube And Cube 
Optimisation
(TACO)

Similar to UNCO Convex cube 
constraints in fee 
space

Slow and safe

Admissible 
Subspace 
TRajectory
Optimiser
(ASTRO)

Optimisation of space 
of polynomial 
coefficients that 
enforce BCs/continuity

Incorporated in 
cost function

Cluttered
environments
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Implementation
6-axis method
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Morrell et. al., 2018 [7]


