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Thermal system requirements:
1. Develop a ~0.5 m? planar heat acquisition zone (evaporator) that can:

a. Accommodate up to 1000 W

b. Accommodate heat fluxes up to 5 W/cm?2

C. Accommodate distributed, discrete heat loads

d. Maintain isothermality within a temperature band of

3° C across entire evaporator

e. Provide temporal stability of less than 0.05° C /min
2. Use less than 5 W of control power
3. Accommodate multiple evaporators and condensers
4. Provide at least a 15 year lifetime

Solution: develop a novel mechanically pumped two-phase fluid loop.
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Advantages of separated flow:
* Minimal 2-phase flow = more predictable behavior
* Lower pressure drop = less pumping power needed
* No pre-heater required = more power efficient
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Basic Analysis |

Governing equations
= / (unknowns in red)
‘ Condenser
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Constraints:

20
(P, —P) <— (AP across wick must be less than available capillary pressure of wick)

r
(P,—P,")>0 (AP across wick must be greater than zero in order to prevent liquid leakage)
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Basic Analysis Il
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User sets Saturation
Temperature

Model calculates Psat
and verifies 20 PSI
NPSHR requirement
is satisfied

Model verifies
Tsubcooled liquid is
greater than
Tfreezing

Qmax set by the user
at 1000 W

Model calculates minimum
mass flow rate to lift Qmax
Qmax < 0.9mtot(CpAT + A)

Model verifiesthat

A(Z—Gmto tRliq)

f
maxXx<————————
Q (Rvap+Rlig+Rwick)

adjusting vapor line diameter

is satisfied by

Model calculates
Qmin trying to
reduces it adjusting
liquid line diameter
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Working fluid study results
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Working fluid study results
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Working fluid study results
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Mass flow rate 1000W optimization
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Mass distribution 1000W optimization
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Conclusions

ANALYSIS WORKSHOP

Freezing [ Titanium | 3165tS
Fluid Weight [kg]|Mass flow rate [ml/min]temperature [K]|Critical Point [K] Instability/reactivity Al compatability| compatability | compatibility Applications
ammonia 17.7 100.0 195.5 405.4 3 1 0 EXCELLENT GOOD EXCELLENT Heat pipes
butane 23.2 200.0 134.9 425.1 1 4 0 EXCELLENT EXCELLENT EXCELLENT Heat pipes
1-butene 23.4 200.0 87.8 419.3 1 4 0 EXCELLENT ? EXCELLENT ?
Hydrogen
Sulfide 22.7 200.0 187.7 373.1 4 4 0 POOR GOOD POOR ?
Dimethyl
ether 23.0 200.0 131.7 400.4 1 4 1 POOR ? POOR ?
Isobutane 22.9 200.0 113.7 407.8 1 4 0 EXCELLENT ? EXCELLENT Heat pipes
Isobutene 23.3 200.0 132.4 418.1 1 4 0 EXCELLENT ? EXCELLENT ?
Isopentane 23.6 200.0 112.7 460.4 1 4 0 EXCELLENT ? EXCELLENT Heat pumps
pentane 2381 200.0 143.5 469.7 1 4 0 EXCELLENT ? GOOD Heat pipes
propane 20.9 200.0 85.5 369.9 2 4 0 EXCELLENT EXCELLENT EXCELLENT Heat pipes
propylene 20.8 200.0 88.0 364.2 1 4 1 EXCELLENT ? EXCELLENT Heat pipes
3 [
Considering:

* Model results

* Critical and freezing temperatures

* Toxicity, flammability, instability

* Material compatibility, applications heritage

The chosen working fluid for the loop is AMMONIA
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