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Thermal Infrared Focal Plane Arrays 
for Earth Science

• Thermal infrared focal plane arrays (FPAs) for a variety of Earth 
Science related applications
– Geology, ocean and ice changes, de-forestation, forest fires, soil moisture and 

plant health, weather, gas detection, pollution monitoring, …

• Infrared band of interests
– 3 – 5  μm MWIR atmospheric transmission window
– 8 – 14 μm LWIR atmospheric transmission window
– Outside transmission windows, e.g., λcutoff ~ 15.4 μm for atmospheric sounding

• Focal plane arrays needed for 
– Imaging
– Spectral imaging (more demanding)

• Desired infrared FPA properties
– Customizable cutoff wavelength
– High operability, spatial uniformity, temporal stability, scalability, and affordability
– Low dark current and high QE
– Higher operating temperature, less demanding cooler
– Reduced mass, volume, power
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Traditional Bulk Infrared Material 
Cutoff Wavelength Coverage

• MCT is the most successful infrared material to date
– Adjustable band gap covering NIR to VLWIR.  Long τSRH.
– Soft and brittle. Requires expert handling in growth, fabrication, storage.
– Longer λcutoff , high Hg fraction, progressively more challenging

• FPAs based on (near) lattice-matched bulk III-V semiconductors are 
highly successful in a few cases
– SWIR InGaAs on InP performs at near theoretical limit

• Single color, limited cutoff wavelength adjustability

– InSb dominates MWIR market, despite lower operating temperature
• Fixed cutoff wavelength, single color

– Lacking the continuous cutoff wavelength adjustability of MCT
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Semiconductor IR Material 
on Available Substrates

• MCT grown on CZT (CdZnTe) substrate covers full range of infrared
• In0.53Ga0.47As grown on InP substrate has ~1.7 µm cutoff wavelength (covers SWIR)
• InSb grown on InSb substrate has 5.2 µm cutoff wavelength (covers MWIR)
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10 µm

Visible

Infrared

Substrates: GaAs InP InSbInAs GaSb CZT*
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• Quantum well infrared photodetectors (QWIPs)  

• Multi-band QWIPs

• Quantum dots (QDIPs)

• Type-II superlattice (T2SL) Barrier IR Detector

Adjustable λc with III-V Quantum Structures
Development at JPL Center for Infrared Photodetectors

1Kx1K LWIR QWIP

1Kx1K LWIR T2SL

1Kx1K MW/LW Dualband QWIP

1Kx1K LWIR QDIP

1Kx1K MWIR T2SL

320x256 LWIR T2SL

640x512 LWIR QDIP
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Quantum Well Infrared Photodetector (QWIP)

• III-V semiconductor FPA “-ility” advantages
– High operability, uniformity, large-format capability, producibility, affordability 
– Temporal stability (low 1/f noise).  No need for frequent system recalibration.

• QWIP FPAs successfully deployed in LandSat-8, HyTES
• QWIP Challenges

– Requires more cooling to control thermal dark current.  Higher generation-recombination 
(G-R) rate from fast LO phonon scattering. 

– Low external QE.  Needs light coupling structure for normal-incidence absorption.
• Being addressed in R-QWIP by K. K. Choi - Resonator pixel concept.
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Type-II Superlattice 
Barrier Infrared Detector
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Concept and Theoretical Foundation of 
Superlattice Infrared Detectors - Caltech Connection

• Originally proposed for HgTe/CdTe superlattice
– Key advantages of superlattice for infrared detection pointed out in 1983 MCT SL paper

• Subsequent focus on superlattices based on the antimonides material system
– Smith & Mailhiot 1987 paper considered the seminal work in T2SL infrared detectors

Smith, McGill & Schulman (Caltech)
Appl Phys Lett (1983)

Advantages of MCT superlattices (SL IR 
detectors in general)

Schulman & McGill  (Caltech)
Appl Phys Lett (1979)

MCT superlattice IR detector

Smith & Mailhiot  (LANL & Xerox)
J Appl Phys (1987)

InAs/GaInSb strained type-II superlattices
IR detector

G. C. Osbourn  (Sandia)
J Appl Phys (1982)

Strained layer superlattice from 
lattice matched materials

G. C. Osbourn (Sandia)
J Vac Sci Tech B (1984)

InAsSb Strained layer superlattice 
for LWIR detector

Darryl Smith: Caltech thesis advisor of Gordon Osbourn

Tom McGill: Caltech thesis advisor of Joel Schulman & 
Christian Mailhiot
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Antimonides Material System 
for Type-II Superlattices

• Material system includes InAs, GaSb, 
AlSb and their alloys
– Nearly lattice matched (~6.1 Å)

• Alloys with GaAs, AlAs, and InSb adds 
even more flexibility

• GaSb (2”,3”,4”, …) and InAs substrates

• Three types of band alignments
– Type-I (nested, straddling)
– Type-II staggered 
– Type-II broken gap (misaligned, Type-III)

• Unique among common 
semiconductor families

• Overlap between InAs CB and GaSb 
VB enables interband devices

• Tremendous flexibility in artificially 
designed materials / device structures

– Arsenides
– Antimonides
– Arsenide-Antimonides
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GaSb Substrate Development

• GaSb substrate available commercially in 2, 3, and 4-inch formats
– Cost: <$1,000 for a 3-inch substrate
– US and UK suppliers

• Detector results demonstrated on 5 and 6-inch substrates
• Low defect density

2-inch 3-inch 4-inch 5-inch
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Antimonide Type-II Superlattices

• Band gap can be made smaller than constituent bulk semiconductors
• Continuously adjustable band gap / λcutoff by varying layer widths

– Covering SWIR, MWIR, LWIR, and VLWIR

• Sufficiently large absorption coefficient to achieve ample QE
• Dark current reduction in superlattice 

– Can be engineered for Auger suppression 
– Less susceptible to tunneling reduction

• III-V semiconductor challenges
– Generation-recombination (G-R) dark current due to SRH processes
– Surface leakage dark current without good passivation 

Adjustable λcutoff

EC

EV

InAsGa(In)Sb

Heavy-hole 
miniband

Conduction 
miniband

Light-hole 
miniband

Review Book Chapter:  
“Type-II Superlattice Infrared Detectors”,   
D. Z. Ting, A. Soibel, L. Höglund, J. Nguyen, C. J. Hill, 
A. Khoshakhlagh, and S. D. Gunapala, 
Semiconductors and Semimetals 84,  pp.1-57 (2011).
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Unipolar Barrier Detector Architecture:
Addressing III-V Challenges

• Maimon & Wicks “nBn detector, an infrared detector with 
reduced dark current and higher operating temperature”, 
Appl Phys Lett. (2006) 
– 240 citations on Web of Science as of June 2017

• Arguably the most influential paper in infrared detectors in the past decade

– The nBn and, in general, unipolar barrier infrared detectors (XBn, 
pBp, DH, CBIRD, …) have been implemented in a wide variety of 
materials systems by research groups world-wide. 

• The unipolar barrier in nBn blocks electrons but not holes
– Leads to G-R and surface leakage dark current suppression

Contact

Unipolar electron barrier

n-type Absorber

B

n n
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G-R Dark Current Suppression in nBn

• Conventional p-n diode
– Defects in the band gap leads to SRH processes and G-R dark current in 

depletion region
– In many cases (e.g., InAs), surface of p-type layer inverts to n-type, 

leading to surface leakage current path
• The nBn

– SRH processes are drastically reduced in wide-band-gap barrier region
– Suppresses G-R dark current 
– Photocurrent flows un-impeded 
– Barrier also blocks electron surface leakage current
– Resulting in higher operating temperature / sensitivity
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Example of T2SL based Unipolar Barrier Detector: 
Complementary Barrier Infrared Detector (CBIRD)

• Complementary Barrier Infrared 
Detector (CBIRD)

• p-type LWIR superlattice 
absorber 

• unipolar hole barrier (hB)
– widely adopted

• unipolar electron barrier (eB)

• Both barriers are superlattice-
based

• Electron and hole barrier functions
– Careful control of doping profile and placement of electrical (N-P) junction 

inside hB suppresses G-R dark current without disrupting the extraction of 
minority carriers

– eB suppresses minority carrier injection (exclusion)
– eB serves as a BSF layer; also suppresses electron surface leakage

Ting et al., Appl. Phys. Lett.  95, 023508 (2009); 102, 121109 (2013)
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CBIRD Device Characteristics

• Discrete 200 µm × 200 µm devices
• 9.8 m cutoff   (50% peak QE)
• QE=40% (λ=8.5 µm, no AR coating)
• Zero-bias turn-on
• Jd( 0.1V, 77K) = 0.8x10-5 A/cm2

• Near-diffusion-limited dark current behavior to below 77K

Additional studies:
• Gain and noise: Soibel et al., Appl. Phys. Lett. 96, 111102 

(2010) 
• Proton radiation effect: Soibel et al., Appl. Phys. Lett. 107, 

261102 (2015) 

ISC 0903 DI, 320x256, 30 m pitch
NET – 18.6 mK (f/2, 300K)
[ Rafol et al., JQE 48, 878 (2012) ]

Ting et al., Appl. Phys. Lett. 102, 121109 (2013)

No A/R coating



18dzt Copyright 2017. All rights reserved.

JPL T2SL Barrier Infrared Detector (BIRD) FPAs

• Successfully implemented FPAs with a variety of λcutoff and formats
• High operability/uniformity routinely achieved, MWIR to VLWIR.

λc ~ 5.4 µm

140 K

99.8% operability (320 x 256)  

λc ~ 11 µm

78 K

λc ~ 11 µm

78 K

99.4% operability (1280 x 720 format)  

99.1% operability (640 x 512)  

99.94% / 99.95% operability (320 x 256 switchable)  

λc ~ 
12.4 µm

λc ~ 
5.1 µm

61 K

Ting et al., Proc SPIE 10177, 101770N (2017)
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T2SL BIRD FPA Development for 
Earth Science Applications

• CubeSat Infrared Atmospheric Sounder 
(CIRAS)
– High Operating Temperature (HOT) BIRD 

MWIR (λcutoff ~5.3 µm) FPA 

• Hyperspectral Thermal Emission Spectrometer (HyTES)
– LWIR (λcutoff ~12 µm) BIRD FPA to replace existing QWIP FPA
– Higher QE, lower dark current, higher operating temperature
– Retaining uniformity, operability, temporal stability …

• SLI-T: Long Wavelength Infrared FPA for Land Imaging
– VLWIR (λcutoff ~13 µm) BIRD FPA
– Goal: Significantly higher operating temperature than QWIP FPA
– Plans for demonstrating a small sensor core as well as a very 

large format FPAs in collaboration with industry partner
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Summary

• Recent advances in III-V semiconductor IR detectors
– Type-II superlattice (and bulk alloy) provides continuously 

adjustable cutoff wavelength from SWIR to VLWIR
– Unipolar barrier device architecture enhances detector 

performance

• MWIR to VLWIR type-II superlattice barrier infrared 
detector (BIRD) FPAs routinely achieve high operability 
and uniformity  

• Meeting a variety of Earth Science infrared FPA needs


