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INntroduction

nermal modeling software has capabillity of
including ground temperature as a boundary. Mars 2020 Rover System Thermal Model
This approach does not capture local ground

Interactions which could change the ground
temperature.

- Interest in explicit ground modeling:

1. Mars 2020 Rover Model: capture effects of
rover shadowing and Multi Mission

Radioisotope Thermoelectric Generator Modeled
(MMRTG) heat dissipation Ground

2. Sample Acquisition: understand temperature
history of subsurface ground



WCC and WCH Environments

A detalled Mars Weather Research and Forecas
GCM) Is used to generate environment predictio
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Ground I\/Iodelmg

» Use of MarsWRF GCM environments is appropriate for tfar-field boundary conditions,
but are not accurate for local regions that interact with hardware of interest

 A5.4dm x 4.om patch of ground is modeled to depth of 60cm (7 node discretization)
* Rover model placed above ground surface
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Ground Modeling

» Ground thermophysical and thermoptical properties are obtained from Thermal
Emission Spectrometer (TES) measurements, onboard the Mars Global Surveyor

Thermal Inertia, | 362 Jm—2K-1s-1?
Thermal Conductivity, K 0.1092 WmK-!
Density, p 1500 kgm-s
Heat Capacity, c, 800 JkgtK-
Solar Absorptivity, abs 0.868
IR Emissivity, &€ 0.95

» Ground is modeled to 0.om to account for full thermal penetration depth
- Closed form solution of semi-infinite body with a sinusoidal varying wall
temperature (7=24.6 hours):
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Ground Temperature Comparison

Atmosphere-Ground convection
added In order to match ground

. Ground model first run without rover.

Was

temperature results to the Mars\WRF

GCM results.
. h=1.0 W/m24K for WCC

- h=1.5 W/m=K for WCH

. Explicitly modeled ground is witr
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Shadowing from Rover Chassis

* The rover chassis shadows the ground
resulting In:

. (Colder daytime temperatures as the

chassis blocks incoming solar flux

Warmer nighttime temperatures as
the chassis blocks radiation heat
loss to the sky
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MMRTG Heat Dissipation

 The MMRTG operates as hot as 200°C

and dissipates ~2000W of heat, resulting
IN a local ground temperature rise over
the course of the entire day

» Effects of shadowing are still present
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WCC Contour Plots

. Plots for warmest time of day (13:00 LTST)
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WCH Contour Plots

. Plots for warmest time of day (12:00 LTST)
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Subsurtace Ground

One of the goals for the Mars 2020 mission is collect rock and regolith samples from a
depth of up to 8cm

The temperature at 8cm depth is different than on the surface, so knowing the
temperature history of the sample may be useful during science measurements

Collected samples will vary from loose dust to solid rock, resulting in a wide range of

expected ground thermal conductivities and penetration depths:
Thermal Inertia, | Thermal Penetration Depth, d
Jm—=2K-1g-1/2 Conductivity, k m
Wm-1K-1

Dust 75 0.0047 0.121

Loose (Sandier) Regolith 220 0.04 0.356
Consolidated (Rockier) 400 0.1333 0.648

Regolith
Solid Rock 1550 2.0 2.509




Temperature, °C

Subsurtace Ground

Diurnal temperature variation at 8cm depth is less than at the surface

Low thermal inertia ground types result in more extreme surface variation and less
extreme subsurface variations

ligh thermal

extreme subsurface variations
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Subsurtace Ground

. Low thermal inertia ground types have warmer peak surface temperatures,
cooler subsurface temperatures, and larger gradients

. High thermal inertia ground types have cooler peak surface temperatures,
warmer subsurface temperatures, and smaller gradients
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Conclusions

. A simple method of modeling Mars ground has been demonstrated that
accurately match the more complex MarsWRF GCM predictions

. Effects of Mars 2020 rover shadowing and MMRTG dissipation on local
ground have been analyzed

. Surface and subsurface ground temperatures have been analyzed for a wide

range of ground types and allows for estimating temperature history of
collected Mars samples
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