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Abstract

The NASA roadmap for 2020 and beyond includes several
key technologies which will have a game-changing impact on
planetary exploration. The first of these is High Performance
Spaceflight Computing (HPSC), which will provide orders of
magnitude increases in processing power for next-generation
rovers and orbiters (Doyle et al. 2013). The second is Delay
Tolerant Networking, which overlays the Deep Space Net-
work, providing internet-like abstractions and store-forward
to route data through intermittent delays in connectivity. The
third is a trend toward small, co-dependent robots included in
flagship missions (MarCO, PUFFER, and Mars Heli). Taken
together, these imply an increasing amount of communication
and computing heterogeneity on Mars in coming decades.
Motivated by these technological trends, we study the con-
cept of Mars on-site shared analysis, information, and com-
munication (MOSAIC) for Mars exploration. The key algo-
rithmic problem associated with MOSAIC networks is si-
multaneous scheduling of computation, communication, and
caching of data, which we illustrate using the three scenarios.
We present models, preliminary solutions, and simulation re-
sults for two scenarios, showing how mission efficiency re-
lates to communication bandwidth, processing power, geog-
raphy of the environment, and optimal scheduling of compu-
tation, communication, and data caching. The third scenario
illustrates future directions of this work.

1 Introduction and Related Work
Three trends are poised to significantly change mission con-
cepts for future NASA planetary exploration. While previ-
ous missions involved single robots with limited processing
capability, the combination of new networking technology,
advanced computation hardware, and small-bodied robot de-
signs is making multi-robot missions more attractive.

In an effort to modernize the flight computing hardware
available for NASA missions, the High Performance Space-
flight Computing (HPSC) initiative was announced in 2013
(Doyle et al. 2013; Powell et al. 2011; Mounce et al. 2016).
Unlike the current generation of computing, this program
aims to keep NASA computing technologies at most one
generation behind commercial technologies. HPSC is ex-
pected to become a mainstay in post-2020 deployments.

The second key emerging technology is Delay or Dis-
ruption Tolerant Networks (DTNs). DTNs span communi-
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Figure 1: Illustrative MOSAIC scenario. A set of process-
ing and data-driven tasks (left as dependency graph) must
be mapped to multiple assets with heterogeneous comput-
ing, communication, and energy capacities. Each asset is
also available over a fixed time window due to terrain ef-
fects or orbital parameters. The goal is to compute all the
required tasks as quickly as possible.

cations links in an overlay architecture, enabling connectiv-
ity across network boundaries in a transparent manner, re-
gardless of multiple potentially disparate network link layer
protocols. A core principle of this overlay quality is the
ability of individual nodes to store network data for pos-
sibly long durations before forwarding it to another node.
This store-and-forward paradigm is central to DTNs. Many
features of Delay Tolerant Networking architectures are of
particular utility in the deep space interplanetary communi-
cations realm, where a multitude of link layers, bandwidth
constraints, and disruptions are expected during end-to-end
transfer of mission commands and data (Wyatt et al. 2017).

Finally, an interest in multi-robot systems re-emerged.
Currently planetary exploration is limited to benign oper-
ating areas due to the inability to land, traverse challenging
terrain, or generally too great a risk for the primary mission
asset. Unfortunately, the most compelling locations are often
in these extreme terrains. Small, low cost, expendable rovers
could transport key sensors and instruments to locations con-
sidered too risky for the primary lander, rover, or astronaut.
Also due to the high communications latencies of deep space
missions these expendable rovers must minimize their de-
pendence on ground control and be able to operate primarily
autonomously. These small craft can be released from par-



ent rovers and guided toward sampling targets which may
be out of reach of the main craft, either because of risk, or
simply to avoid delays from stopping. The “daughter-craft”
do not have advanced processing capabilities due to weight,
power, and cost constraints, but are attractive for a number of
science targets, such as being left behind to investigate tran-
sient detections, risky exploration areas such as Recurring
Slope Lineae, or wide-area sampling for In-Situ Resource
Utilization. Two examples of such potential future systems
now being considered for development are the Mars Heli-
copter, and the “PUFFER” rover (Pop-Up Flat-Folding Ex-
plorer Robots) (Karras et al. 2017).

Combining these three trends, we envision scenarios in
which a system containing two or more robotic agents with
large discrepancies in processing power, communication
bandwidths, data capacities, and energy storage must col-
laborate to achieve a variety of realistic remote science mis-
sions.

The concept of study in all three scenarios is that ad-
vanced, software-driven robotic capabilities can be realized
on small, resource-constrained, high-risk “edge” devices by
optimizing data flows and processing assignments among
all the devices. In this paper we formalize this problem and
present preliminary results in modelling and analyzing Mars
exploration missions. Because data and computation are
shared among many devices, we dub a local computation-
sharing network a MOSAIC (Multi-robot On-site Shared
Analytics Information and Computing) network.

Our paper is organized as follows. First, we derive our
problem statement in Section 2. We decompose objectives
into a set of computing tasks, each of which generates data
products which must be fed into subsequent tasks (possi-
bly by transmitting between agents). Each task may be con-
ducted by humans or robots. In Section 3 we discuss a search
routine which can identify how the computational load can
be distributed over the network.

We describe our study scenarios in Section 4. In the first
illustration, (Section 4.1) we consider a single, cpu-bereft
asset which can request computation from a nearby base
station or visible orbiter. We study both a single PUFFER
released from a base station (first scenario), and the Mars
2020 rover assisted by a hypothetical HPSC (second sce-
nario). Planning for a potential Mars Sample Return cam-
paign is dominated by the need for autonomous traversals of
increasingly fast speeds, and we show an analysis of impact
that computation sharing can have on mission success.

The third scenario (Section 4.3) is a mother / daughter
craft design consisting of a large centralized asset (a human
or flagship rover) controlling one or more agile, but less-
capable “scouts” for an area search task. In this regime we
discuss some emergent behavior like data relay and auto-
matic choice of a centralized computing agent.

2 Problem Description
In this section, we describe how we frame the problem of dy-
namic shared computation for Mars exploration. We define
a data communication and processing workflow that repre-
sents the mission objectives and intermediate goals at a high
level.

Our primary abstraction is that of a Server Graph. Let
there be N ∈ Z+ agents in the network, where Z+

denotes positive integers. The robot agents are denoted
by A1, A2, . . . , AN . Each agent has on-board processing,
memory, and communication links.

2.1 Computation

The agents perform M ∈ Z+ data-driven tasks. The set of
M tasks is denoted T. We consider heterogeneous process-
ing times, so the time cost of executing task T on agent i
is given by: Ct

i (T ). The model represents, e.g., the worst-
case, expected, or bounded computation time, and so all the
times are deterministic. In addition, program outputs are the
same irrespective of the agent doing the computing (or are
just as useful). Task T performed by robotic agent i may
also include an energy cost, Ce

i (T ). If an agent has access
to two or more different processing units, we model those as
two co-located agents. If an agent has access to two or more
similar processing units, we adjust the costs of each task
to reflect its level of parallelization, but otherwise consider
them the same processor.

Tasks produce data products. Data products for task T are
denoted d (T ). If a task produces more than one data prod-
uct, we model it as multiple tasks, one per produced data
product. The size of the data products are known a-priori,
and labelled as s (T ) for task T .

Let PT be a set of predecessor tasks for T . Then j ∈
PT means task T depends on the output of task j. A task
may have multiple prerequisite sets, one of which must be
satisfied entirely. That is, a task must have only one of its
prerequisite sets satisfied.

The static software network SN captures dependencies as
the flow of information through various individual programs
to solve the complex computing task.

Finally, we allow some of the tasks to be required and
some to be optional. Optional tasks have a reward score
(r(T )). The set of required tasks is denoted R ⊆ T.

Assumptions: The software network SN does not have
any cycles. The mission statement for each problem/scenario
can be stated as a software network SN .

A solution is a mapping of tasks to servers (agents) and
start-times denoted

S : i→ (Aj , t) (1)
where (2)

j ∈ [1, . . . , N ] (3)
t ≥ 0 (4)

Each agent’s computing schedule in a solution is denoted

Si = j →i (t) (5)

and has cost equal to the time required to complete the last
task in the agent’s queue,

C(S) = max
i

C(Si) (6)

where (7)

C(Si) = max
j

Si(j) + Ct
i (j) (8)

To execute a specific task in the software network, an
agent must have all the data products from one of the tasks
predecessor sets, either by computing them directly, or by re-
ceiving them by communication from other agents. To com-
municate, we model each agent as having a Delay Tolerant
Networking (DTN) stack to enable communication, as de-
fined next.



Figure 2: Contact graph for 3 agents showing times and bandwidths available

2.2 Communication
A key feature of DTN-based networking is Contact Graph
Routing (CGR) (Wyatt et al. 2017). CGR takes into account
predictable link schedules and bandwidth limits to automate
data delivery and optimize the use of network resources. The
contact graph describing a network’s links over time is dis-
tributed to participating DTN nodes, allowing each node a
clear picture of how to route data in an optimal manner.
Each scenario is complicated by the relative geography of
the agents which may affect communication rates, their mo-
tion plans through the environment, and the nature of long-
distance communications such as light delays or degraded
signal strengths. The practical effect of incorporating DTN’s
store-forward mechanism into the scheduling problem is that
it is possible to use mobile agents as robotic routers to ferry
data packets past communication interference.

The time-varying contact graph CG captures the commu-
nication network topology between agents. For each agent,
the graph provides a list of all the time intervals during
which it can establish a directed communication link with
another agent. An example timeline representation of a con-
tact graph for 3 agents showing available bandwidths can be
seen in Figure 2.

Links have a time varying data rate from 0 (not connected)
to∞ (communicating to self), denoted by rij(t) for the rate
from Ai to Aj at time t. Thus, communication links are di-
rected.

At any time k, let Gk be the graph representing the set
of agents it can send to or receive from. Vertices V =
{1, . . . , N} and the directed edges Ek along which commu-
nication is possible. That is, if information can flow from
the ith agent to the jth agent at the kth time instant (where
i, j ∈ V), then the edge

−→
ij ∈ Ek.

Communication between agents is a task with cost de-
termined by the size of the data product and the current
data rate between agents. The task of communicating the
data product d (T ) from Ai to Aj at time t requires time
Ct

ij (T ) ∝ s (T ) /rij(t) for both agents and energy equal to
Ce

ij (T ) on the sending agent.
Assumptions: Agents take 0 time to communicate the so-

lution to themselves. Intervals with non-zero data rates are
sufficiently long to transmit any data product (or they would
be “effectively zero”).
Problem 1 (Distributed Computation). Given a set of tasks
modelled as a software network SN , a list of computational
agents Ai i ∈ [1 . . . N ], a contact graph CG, and a maxi-
mum schedule length C?, find a solution which is a mapping
of tasks to servers (agents) and start times, S = f(i) :→
(Aj , t), such that:

• The maximum server cost, C(S) = maxj C(Sj) is no
more than C?;

• All required tasks are scheduled;

• At least one of the prerequisites for all required tasks are
scheduled.

3 Scheduler Implementation
To study the role of optimal distributed computing in our
mission concepts, we implemented a scheduler which uses a
simple state space search to satisfy Problem 1.

We use a simple solution-space search. Conceptually, a
priority queue of solutions is maintained, sorted by cost.
The set of acceptable end states are those which contain all
the required tasks. The starting state is an empty schedule.
At each iteration, a new, partial solution is constructed by
adding a new task to one of the servers. If the requisite data
products were not previously calculated on that server, then
the solution is first augmented with communication tasks to
gather the missing pre-requisites. The cost of the commu-
nication task depends on the transmission rate between the
agents, and the earliest time that the agents can communi-
cate. The agent which ensures earliest arrival time is cho-
sen for each prerequisite data product. Thus, at each itera-
tion either the solution is augmented by one task, or by a
set of transmissions to retrieve missing data followed by the
task itself. During search, a list of feasible solutions is kept
for each reward value. If the resulting solution contains all
required tasks, it is stored, indexed by reward. The search
continues until the priority queue contains only solutions
exceeding the maximum cost. Then, the maximum reward
solution is returned.

The performance of the implemented scheduler is suitable
for trade studies and ground-side assignment of computing
duties. However, since we can solve the optimal distribution
of tasks a-priori given a communications regime, it is simple
to provide an onboard scheduler as a lookup table of pre-
verified assignments.

In what follows we describe three scenarios where
scheduling shared computing resources is key and would
have impact. We use agent’s tasks taken from literature and
from future exploration missions to Mars.

4 Scenario Descriptions
Given the problem description and scheduler implementa-
tion from previous sections, we now describe the mission
scenarios we consider. The scenarios were chosen to be re-
alistic enough for meaningful analysis, and to stress different
aspects of the computation and communication scheduling.

The costs for transmissions vary by data product size
and transmission speeds (e.g., the contact graph data rates).
Thus, we vary the data rates and maximum time to explore
the trade space of solutions. The resulting set of solutions
could be pre-calculated for quick look-up in a real mission if
the device was too resource-constrained to run a full sched-
uler. However, we leave the onboard scheduler implementa-
tion to future work and instead explore the “tipping points”



between schedules and data rate thresholds at which inter-
esting transitions between scheduler regimes occur.

In what follows we describe three scenarios. For each sce-
nario we determine which set of agent capabilities is rele-
vant, and compose them into a software network. For two
of them we provide initial results of simulations, which illu-
minate the benefits of a MOSAIC-like architecture. The last
scenarios illustrate more complex missions in which the ar-
chitecture would provide a promising impact in future work.

Figure 3: The “assisted drive” scenario.

4.1 Mars Drives
The first conceptual mission (Figure 3) is based on a single
PUFFER combined with a parent platform (e.g., base sta-
tion or flagship rover) to accurately place a PUFFER’s in-
strument (microimager) on a terrain feature. This operation
occurs within the parent platform’s direct communication
and sensing line-of-sight (LoS). PUFFER must be capable
of autonomously navigating the environment homing in on
the feature. It may leverage the better computation capabil-
ities of the parent platform, as well as its sensors that offer
a more advantageous perspective of the drive to improve its
placement accuracy.

Each PUFFER is equipped with two STM32F4 micropro-
cessors clocked at 180MHz and 168MHz with 256KB and
192KB of SRAM (Static Random Access Memory). Current
versions of PUFFER utilize a Bluetooth radio with up to 2.1
Mbit/s data rates at approximately 1 W. Future versions of
PUFFER may use a mesh radio, such as ZigBee, with data
rates up to 250 kbits/s with approximately 100 mW power
draw.

The parent platform, representing either a lander or rover,
would include more significant computational resources,
such as the HPSC. It would also have more power (e.g.,
MSL’s radioisotope thermoelectric generator produces 2.5
kWh), and the communication equipment to communicate
with an orbiter or directly to Earth (e.g., MSL has X-band
for direct communication with Earth at 32kbit/s with 15 W,
and UHF for communication to the orbiter at 2Mbit/s with 9
W) (Edwards et al. 2014).

We assume the parent platform can image the surrounding
environment and locate the puffer to provide terrain-relative
localization. We also assume the PUFFER can estimate it’s
own position using visual odometery (VO) and inertial mea-
surements. We assume onboard state estimation using VO

requires an image from the PUFFER’s onboard camera sys-
tem.

Since the PUFFER is equipped with a small scientific in-
strument, we assume that the puffer can acquire measure-
ments from the instrument during its drive, but that this re-
quires time, such as focusing, deploying, and pre-processing
an image from a microscope. Thus, in process of navigating
to its destination, a PUFFER has to sense the environment,
plan its path and act (dispatch and execute low level tasks).
During that process, a PUFFER might choose to perform
science (microimager) and transmit the science data product
to the lander for further use.

Figure 4a shows a data flow diagram to represent the soft-
ware network associated with the aforementioned processes.
The diagrams model the options available to the PUFFER to
execute and share tasks in this scenario. Depending on the
bandwidth and contact graph, the vehicle might choose to
request the lander to take a long range image, localize the
vehicle, perform path planning and then send the plan back
to the PUFFER to execute the plan. That would potentially
allow the PUFFER to use the spare time to take a micro-
scope image and send it to the lander to archive it for further
data fusion. The PUFFER might choose, as an alternative, to
take an image from its camera system, use visual odometry
to localize, and perform path planning all onboard; however,
given that VO is less accurate than the terrain-relative local-
ization from the lander, the PUFFER would have a higher
uncertainty level about its position which would be carried
to path planning.

If both images (from lander and PUFFER) are taken and
both localization processed are performed, the resulting po-
sition estimate is more accurate and so is the resulting tra-
jectory from the path planning process. Figure 4a illustrates
the tasks that can be shared and executed either onboard the
lander or the PUFFER. Specifically, localization tasks and
path planning are example of computational capabilities that
can be scheduled and placed either onboard the lander or the
PUFFER itself. Colored tasks mark the required vehicle for
those capabilities.

We analyzed this software network for a variety of time
limits and bandwidths between parent and PUFFER. The
analysis is summarized in Table 4b. Figure 4c shows an ex-
ample activity timeline for the puffer and base station from
one of the resulting regimes. We find that high bandwidths
are required to show preference towards off-board comput-
ing, at least for this scenario.

As shown in Table 4b, the long delays of taking micro-
scopic images can be offset by requesting computational
aid from the base state for planning paths. Alternatively,
optimizations to program runtimes could have greater im-
pact than bandwidth increases. Analyzing the sensitivity of
these scheduler regimes with respect to runtimes, environ-
ment such as bandwidth distributions, and hardware choices
is a key future direction to enable quick hardware and mis-
sion trade studies for distributed systems.

4.2 Mars 2020 Assisted Drive
Note, the single-PUFFER scenario closely mimics the Mars
2020 mission with only minor changes. One defining fea-
ture of Mars Sample Return mission concepts is the likli-
hood of re-visiting the same area with subsequent launches
to fetch, retrieve, and launch the samples (Mattingly and
May 2011). If an on-site computing asset were available to
multiple rovers in the area, they could make use of it for



(a) Data flow diagram representing software network for the single PUFFER scenario.

b/w (Mbps) Base Cam Puffer Cam VO Locate Puffer GNC Drive Microscope Store Img
≤ 0.05 Base PUFFER PUFFER Base PUFFER PUFFER N/A N/A
(0.05, .5] Base PUFFER PUFFER Base Base PUFFER N/A N/A
(0.5, 2.5) Base N/A N/A Base Base PUFFER PUFFER Base
≥ 2.5 Base PUFFER Base Base Base PUFFER PUFFER Base

(b) Distributed processing regimes for a single PUFFER and base station.

(c) Example activity timeline for the base station and puffer for a resulting regime.

Figure 4: Single-PUFFER scenario. The software network (4a) was analyzed as a function of bandwidth between the base
station and rover to produce different processing regimes (4b. The rate of data transfer between the two uniquely determines
what processes are possible, and where they are executed. Each data point is a timeline as shown in (4c. The roll-up shows
aggregation of thousands of timelines produced by a solution-space search routine.

off-loading their required engineering tasks, in order to take
advantage of opportunistic science processing and sensing.
Thus, the assisting asset(s) could provide an “infrastructure
upgrade” and could remain on-site, providing communica-
tion, computation, and data analysis services for all sub-
sequent phases of the campaign. An interesting direction
for future research would be to identify the requirements
of such an asset. The asset could be embedded in a Cube-
Sat network, and “piggy back” on the 2020 launch, simi-
lar to the MarCO CubeSats (Hodges et al. 2016). Alterna-
tively, it could be embedded in the “skycrane” lander and
dropped during the “flyaway” phase (Korzun et al. 2010;
Sell et al. 2013). Finally, it could be a tethered balloon con-
figuration (Kerzhanovich et al. 2004).

To explore any potential benefit, we next consider a
strategic drive campaign by a Mars 2020 rover. In this
case, we used information about the intended Mars 2020
drive pipeline from a talk given by Richard Rieber (Rieber
2017). The Mars 2020 conceptual path-planning pipeline,
presented in (Rieber 2017) is simplified for our use in Fig-
ure 5a. The randomized time associated with Select Path is
understandable given the mission analysis from (Ono et al.
2015). This data used in simulation is adapted from (Ono et
al. 2016).

We created the model software network for Mars 2020
illustrated in Figure 5b. The required tasks are constructed
to model the timings given in Figure 5a. From (Ono et al.
2016), we also included the ability for the rover to use im-
agers to classify the terrain, but only as an optional algo-
rithm, since the current Mars 2020 pipeline does not include

it.
To model the terrain in our simulations, we use terrain

data classified from HiRISE imagery from (Ono et al. 2016).
Multiple terrain types are grouped into different classes or as
obstacles (terrain that cannot be traversed). We do not cur-
rently take slope into account, therefore we model the ve-
locity of a rover in a given terrain class based on the average
speed over multiple slopes for that classification.

In order to model the different fidelity of data obtained
in orbit and on the ground by the rover, we assume certain
terrain types as unknown. When a rover is in an unknown
terrain type, it will move at the velocity of the real terrain
class; however, it will plan a path assuming a terrain with
the fastest traverse velocity. Nevertheless, if a rover is able
to perform terrain classification, we assume it will be able to
correctly classify the terrain within a given radius.

Repeating the analysis of the software network produced
the data shown in Table 6a. From this analysis, we isolated
four operating regimes for the rover. In the first regime, the
rover has no access to the assisting resource (regime 0).
Regimes 1-4 represent increasing bandwidth, and therefore
increasing savings from assisted computation. To reveal the
strategic benefits of these computational regimes, we simu-
late the four rover regimes across a Mars-like strategic drive.

To test the different communication and computation
regimes, simulations for 4 different regimes were run on 3
different terrain subsections 10 times each (resulting in 30
total runs) using stochastic durations for the path planning
and terrain analysis activities. The assumed stochastic activ-
ity times are shown in Table 1. It is further assumed that the



(a) Simplified model of Mars 2020 path planning. (b) A corresponding software network.

Figure 5: A model for the timing of Mars 2020 as discussed. The Select-path task is modelled as a random process taking a
minimum of 2 seconds, but widely varying. The over-runs associated with any runtime longer than 30 seconds is the primary
contributor to lost drive distance. The secondary contributor was a lack of terrain awareness, caused by insufficient processing
power to run onboard terrain analysis.

duration to communicate the data to the balloon is approx-
imately 3 seconds, and that the duration to communicate a
response back to the rover is approximately 1 second. The
distance between the start and end points for each traversal
was approximately 93 meters.

Table 1: Duration of activities in seconds on-board the rover
and on the balloon.

On-Board Balloon
Path Planning N (8, 4) N (0.5, 0.0001)

Terrain Analysis N (4, 4) N (0.5, 0)

The baseline regime is Regime 1, where the rover per-
forms all path planning on-board and does not perform any
terrain analysis. In Regime 2, the rover sends data to a bal-
loon where the path planning algorithm is performed and
the results sent back to the rover. Regime 3 is the same as
Regime 2, except that with the extra time, the rover per-
forms terrain analysis on-board, which can be used for the
next planning cycle. In Regime 4, terrain analysis is also per-
formed on the balloon and the results communicated back to
the rover.

Figure 6b shows an example of the different paths that
are taken for the different regimes when some of the terrain
is unknown without terrain analysis. The yellow terrain re-
quires terrain analysis to be identified and is also slower to
traverse. From this example, it is shown that with the terrain
identification knowledge, Regime 3 and Regime 4 are able
to come up with more efficient paths.

Since it is assumed that the rover must operate on a fixed
30 second cycle, if the path planning and/or terrain analysis
are not completed within the allotted 8 seconds, an over-
run will occur, causing the rover to stop until computation
is completed. The distribution of percentage of overruns are
shown as box plots in Figure 6d. As expected, Regime 2
and Regime 4 result in no overruns, whereas Regime 1 and
Regime 3 have overruns around 50% of the time.

Another metric for the improvement of the rover perfor-
mance is in the time it takes to traverse a terrain. Figure 6c
shows the time to traverse a terrain for each regime com-
pared to the baseline (Regime 1). From these results, it is
shown that being able to perform terrain analysis, and there-
fore being able to plan a path with better terrain knowledge,

improves the time to travel between two points.
We note a measurable increase in strategic drive efficiency

using this limited study technique. Future work can focus on
a more realistic terrain model, including that of the intended
landing site. In addition, we can more realistically model
the communication network. Intermittent loss of connectiv-
ity and varying data rates are significant impediments to this
approach over long dries. Finally, modelling multiple assets
would involve not only competing for the computational re-
sources, but forwarding terrain classifications and drive rates
between rovers.

4.3 Cooperative Exploration
The next conceptual mission (Figure 7) is based on multiple
PUFFERs cooperatively (i.e., their autonomous operations
are coordinated by sharing information) expanding science
and exploration footprints into areas not within direct line-
of-sight of the parent platform. The team of PUFFERs will
maintain a communication network while exploring an en-
vironment with limited direct line of site (e.g., rubble fields,
caves, lava tubes).

We assume the PUFFERS are exploring a distributed, but
spatially-correlated phenomena, such as water moisture lev-
els. We model the sampling and estimation on a similar ter-
restrial process used in farms(Tokekar et al. 2016). The point
samples of moisture levels are gathered by spectroscopy or
dipole measurements, and are incorporated into a spatial-
estimation technique called Kriging (Brdossy and Lehmann
1998). Kriging is computationally expensive, and requires
storage of all measurements. Therefore, it is not suitable
for computationally-constrained devices like PUFFERS, but
can be performed on the base station, orbiter, or on Earth.

In this scenario, each PUFFER operates under the same
condition and software network as those used in the single
vehicle scenario (Figure 4a), except that herein the lander
becomes a shared resource for computation requests. More-
over, the team of PUFFERs provides a larger mesh-based
communication network, allowing data to be sent across ve-
hicles to reach the lander.

As before, a PUFFER can perform localization and path
planning onboard, request the lander for support on those
tasks, or even both while navigating the environment. In
those cases, the computation sharing has to be coordinated
among the vehicles since the lander has limited computa-
tional resource. In such coordination, PUFFERs can reason



b/w (Mbps) Time Image Mapping Extra Observations Plan Path Confirm / Drive SPOC-lite
(0− .1] 27 Rover Rover N/A Rover Rover N/A
(0.1− .3] 29.3 Rover Rover N/A Assist Rover Rover
(0.3− 1] (29.7− 28.2] Rover Rover Rover Assist Rover Rover
(1, 100] (27.3− 15.3] Rover Assist Assist Assist Rover Rover

(a) A Mars 2020 rover adaptation of assisted drive. The adaptation was made using the pipeline information given in Figure 5a.
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Figure 6: Effect of computing regimes on a Mars 2020-like mission. 6b shows the path choices. The main effects of addition
computation assistance is reduced planner overrun and better terrain classification, resulting in more efficient paths, as shown in
6c and 6d. Terrain types are designated as different colors and the darker terrain (darkest except for black) can only be identified
using terrain analysis.

Figure 7: Multi-Robot Scenario 2

about routing their data products to the lander. For exam-
ple, it might detect that a direct communication link to the
lander is poor due to the current terrain features, but routing
data through one of the other PUFFERS would work better.
That would allow the scheduler to potentially add both mi-
croscope image and archive tasks to the regime, along with
transferring the data through the vehicles network.

This scenario presents significant challenges to dis-
tributed computation because of the combination of roles
a PUFFER may take. First, it may be purely sensory, tak-
ing images and then moving while sending those images
to the base station. Second, it may be able to position it-
self as a relay node, spending all its time ferrying data be-
tween other assets. Alternatively, it could be a combination
of the two, depending on its location, the plans of assets
around it, and the motion around intervening terrain which
may affect bandwidth. Finally, the motion planning problem
in this context is critical. How are sample locations chosen
for the PUFFERs? How does the motion and location of the
PUFFERs affect data rate, and can paths be chosen to maxi-
mize information flow? These questions are good directions
for future work.

5 Conclusion
In this paper we described the MOSAIC concept for Mars
exploration in which simultaneous scheduling of computa-
tion, communication, and caching of data across different
networked assets becomes increasingly essential. We pre-
sented a series of scenarios to illustrate how MOSAIC net-
works can impact science utility, vehicle performance and
would enable an optimal distribution of computational loads,
specially in multi-asset scenarios - a natural progression of
future missions to Mars and other planets.

The cooperative exploration scenario in Section 4.3 rep-
resents our major next hurdle. A comprehensive solution
would include role assignment (relays versus sensors), posi-
tion and path assignments to maintain connectivity, and re-
sponse to changing communication networks, including mo-
mentary breakage of links to gain greater sensing data. We
will proceed first with role assignments for data routing.

The preliminary study of optimal processing distribution
is useful as feedback into hardware design. The methods
of this paper can be used to optimize the hardware of the
PUFFER design, or design communication networks for
future Mars exploration missions. In this direction, deter-
mining the “tipping points” between different processing
regimes is most important. The differences in efficiency be-
tween regimes can be very large. A schedule sensitivity anal-
ysis is required to determine the optimal schedule’s response
to perturbations to e.g., bandwidth. We have conducted this
analysis by using a “brute-force” search routine, but produc-
ing analytical and algorithmic results which are quick are
more capable are a primary next step for research. We ex-
pect this analysis will fold nicely into a framework similar
to (Herzig et al. 2017) which provides a hardware-space ex-
pansion for designing multi-asset missions.

The initial results and envisioned scenarios described in
this paper brings interesting next steps and promising re-



search efforts in the MOSAIC project. We will study in more
depth the multi-vehicle scenarios presented in this paper and
identify the key algorithmic requirements for those cases. In
these cases we will investigate on different scheduling tech-
niques and formalisms that could be utilized onboard the as-
sets to allocate computation load, considering vehicle with
both low and high CPU capabilities, and manage connec-
tivity fluctuations. Our framework is designed to be respon-
sive to loss of connectivity by re-scheduling tasks based on
a new communications graph using a set of pre-verified dis-
tribution of tasks. In particular, we have studied the change
in optimal computing distribution due to bandwidth fluctu-
ations, but more research is necessary to fully evaluate risk
of connectivity variations and provide an onboard scheduler
which can accommodate unlikely but impactful changes.
Moreover, we will also incorporate the multi-agent coordi-
nation aspect to the target scenarios, in which agents have
to negotiate the distribution of computation, data flow and
utilization of resources. Agents might have different utility
functions and goals that will add an interesting element to
our network problem.

Finally, uncertainty and risk management is a key as-
pect of realistic assets networks for planetary exploration.
Several aspects of exploration mission have uncertainty and
can potentially be represented with stochastic models, such
as task outcome and duration, vehicle failure, connectivity,
bandwidth variations, and others. One promising research
avenue is to incorporate probabilistic planning and schedul-
ing approaches (Santana et al. 2016) to the computation
sharing problem, as well risk-bounded techniques to provide
guarantees that the network and the vehicles are able to op-
erate within user specified bounds.
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