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Motivation

organic-rich atmosphere
and surface

de-coupled outer shell

(water-ice / clathrate) )

global subsurface ocean

high-pressure ice VI shell

hydrous silicate core
~2000 km radius

« Titan is only body besides Earth to
support standing bodies of liquid

* Hydrocarbon seas of _
astrobiological and oceanographic
Interest

* Aprobe structure and instruments
would need to survive splashdown
event

— Need to predict impact loads
« Knowledge of plunge depth vital for

probe design (liquid resistance)
and operations timing
— Ensure doesn’t hit bottom
— Informs ability to take sample at
depth

* Analytical solutions limited to
simple axisymmetric shapes and
ideal vertical entry
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Probe EDL Concept of Operations

Freefall segment would reduce landing dispersions due to winds
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Candidate Probe Designs

1.1m |
0.81m
« 45° Spherecone Probe * Cylinder with Spherical Nose Probe
* Provides subsonic aero stability in » Drag plate reduces velocity and
freefall provides stability in freefall
* Provides tapered shape for low-G * Flexible packaging
impact
* Provides high drag for low velocity
impact and low-G load on
splashdown
Predecisional information for planning and discussion only jpl.nasa.gov
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Analytical Methodology

Impact G-Loads

* Impact velocity is terminal descent velocity
_ Vo _ 2Mg
PatmSCp
 Method 1: Closed form solution for spherical noses [Hirano and Miura]
— Froude number, F = V,(gRy)™ />

. 3M
— Mass ratio, u = p—
N

— Max deceleration, A,,,, = 0.491F%u" 73g
* Method 2: Solve numerically over time [McGehee, et al],[Lorenz, et al]:
— For general axisymmetric shape, radius R is a function of height: R = f(h)
V2nkpR?dR

- A= (M+2kmpR® )dn

MgVy

Mg+(%)2?npgR3 [sin3 cos‘l(l—%)]

— For spherical nose, V =

_ AV

- 4 T At
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Analytical Methodology
Plunge Depth

 Method 1: 1-D differential equation solved
numerically

— Buoyancy (B), drag (D), and weight (W) forces act
on probe

— Ma =B —sign(V)D — W
« Method 2: Conservation of momentum and
energy

— Use conservation of momentum to calculate
residual velocity after impact

— WOrkBuoyancy = KE
— Ignore drag, potential energy
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LS-DYNA

» Explicit, transient dynamic finite element code
* Fluid modeled with Arbitrary Langrangian-
Eulerian approach

— Takes into account movement of fluid mass and
compressibility
— Not full Navier-Stokes

* Probe is rigid body

 Maximum expected sea density used for
impact loads: 500 kg/m3

« Minimum expected sea density used of
plunge depth: 630 kg/m3
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Test Suite for 45° Spherecone Candidate Probe

Case 1: 0° Vertical High Load Case 2: 10° Vertical High Load Case 3: 20° Vertical High Load
Vv =8.8 m/s Vv =8.8 m/s Vv =8.8 m/s
Vh =0.0 m/s Vh =0.0 m/s Vh =0.0 m/s
Angle = 0° Angle = 10° Angle = 20°
Liquid Density = 630 kg/m3 Liquid Density = 630 kg/m? Liquid Density = 630 kg/m?

v v

Predecisional information for planning and discussion only
© 2017 California Institute of Technology. Government sponsorship acknowledged. jpl.nasa.gov



Acceleration (g)

Results: G-Loads
45° spherecone LS-DYNA compared to analytical
* Note two peaks seen in both LS-DYNA and numerical integration

— 1stpeak corresponds to max 4R/, of spherical nose
— 2nd peak occurs on cone
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Results: G-Loads Motion Sequence

45 degree spherecone LS-DYNA, all cases
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Test Suite for Candidate Drag Plate Probe

Case 1: Maximum Plunge Depth Case 2: 0° Vertical High Load Case 3: 30° Vertical High Load
Vv =12.5m/s W =125mis W= 125mis
Vh=0.0 m/s Vh=0.0m/s Vh=0.0 m/s
Angle = 0.0 degrees Angle = 0.0 degrees Angle = 30.0 degrees
Liquid Density = 500 kg/m3 Liquid Density = 630 kg/m3 Liquid Density = 630 kg/m3

Case 4: 0° Resultant High Load Case 5: 15° Resultant High Load Case 6: -30° Resultant High Load
W =12.5mis W=125m/s W =125m/s
Vh=34ns Vh=34nms Vh=34m/s

Angle = 0.0 degrees Angle = 15.0 degrees Angle = -30.0 degrees
Liquid Density = 630 kg/m3 Liquid Density = 630 kg/m3 Liquid Density = 630 kg/m3
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Results: G-Loads
Drag Plate Case 2 (vertical only) LS-DYNA compared to analytical
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Deceleration [Earth Gs]
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Drag plate not modeled analytically
LS-DYNA sees second peak due to drag plate

Method Peak Acceleration
[Earth G’s]
Closed Form Spherical 21.9

Numerical Integration 19.7
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Acceleration (g)

Acceleration (g)

Results: G-Loads

Drag Plate, LS-DYNA for all cases. X-axis is out the nose of vehicle

Case 2 - X-Acceleration
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Results: G-loads Response Sequence
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* Fluid impact
phenomena predicted
well compared to
other experiments

Note void above the
plunging body
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Results: Plunge Depth

0.4 sec. 0.8 sec. 1.2 sec. 1.6 sec. 2.0 sec.
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Conclusions

« Analytic expressions, LS-DYNA, and experiments (on other test
articles) yield results within 20% of each other for normal impacts

— Analytics useful for rapid initial scoping/screening of designs

« LS-DYNA accurately predicts impact loads and impact flow
phenomena

— Useful for determining lateral loads of off-vertical impacts

— Valuable in calculating margin for instrument accelerations for off-
nominal sea entries

 Includes pitch angles and horizontal winds
« Resurge difficult to predict due to complex flow
— Behavior of cavity is important
— Solution also degrades over time
— Run time becomes computationally expensive
— Scale model tests and correlations may be useful
— CFD may be more effective
« Simple models suggest plunge depth of ~4m and resurge time of
~10 s for baseline Titan probe design in this study
— May permit measurement of conditions at depth

— Tests and/or CFD needed to better understand vehicle depth and
entrainment of liquid adjacent to probe surface
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Back-up
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Related Work

« Von Karman: derived momentum approach for
wedges entering water

— To find max impact load for seaplane floats

* McGehee, et al: Theoretical and experimental
water impact accelerations results for Mercury
program

« Stubbs, et al: Experimental results for Apollo
program

* Hirano and Miura: Closed form solution for peak
oad of spherical and conical shapes related to
experimental results

 Lorenz, et al and Selff, et al: Conducted
experimental impact tests into water and kerosene
for Titan probes Huygens and TIME
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Test Results:
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