Jet Propulsion Laboratory
California Institute of Technology

Leveraging the Usage of GPUs in SAR
Processing for the NISAR Mission

Joshua Cohen (334D) and Piyush Agram (334D)

Outline

 NASA-ISRO Synthetic Aperture Radar (NISAR)
mission

* INSAR Scientific Computing Environment (ISCE)

« Topographic correction for SAR imagery

« Upgrading from a Single-Instruction/Single-Data
(SISD) to a Single-Instruction/Multiple-Data
(SIMD) design

* Benchmarking results and planned future work

NASA-ISRO Synthetic Aperture Radar (NISAR)

Mission Overview, Background

L-band (24 cm wavelength)

S-band (12 cm wavelength)

SweepSAR technique with
Imaging Swath > 240 km

Polarimetry
(Single/Dual/Quad)

12-day exact repeat

3 — 10 meters mode-
dependent SAR resolution

3 years science operations
(5 years consumables)

Pointing control < 273
arcseconds

Orbit control < 500 meters

> 30% observation duty
cycle

Left/Right pointing
capability

4/11/17

Low temporal decorrelation
and foliage penetration

Sensitivity to light vegetation
Global data collection
Surface characterization and
biomass estimation

Rapid Sampling

Small-scale observations

Time-series analysis

Deformation interferometry

Deformation interferometry

Complete land/ice coverage

Polar coverage, north and
south

jpl.nasa.gov

NASA-ISRO Synthetic Aperture Radar (NISAR)

Mission Overview, Big Data Problem

Key Driving Requirements NISAR L3 MS/Algorithm Requirements
Data Acquisition Volumes * | 26 Tbits/day (3.25 TB)I
Prime Data Products * 14 (2 Level O’s, 2 Level 1's, 10 Level 2's)
* excluding ancillary /auxiliary products
Data Product Availability * Level OB none
* Level 0B, Urgent Response | 2 hrs
* from availability of LOA data & * Level 1 30 days
needed inputs at JPL SDS . Level 2 30 days
Processing/Reprocessing of * Forward processing:|Daily keep upI
science products + Post-Val reprocessing (optional)]4X speed

- 8 months worth of data, all products (@Science + 8 months)

* End of mission reprocessing (optional): 1X speed
- 12 months worth of data, all products (@Science Phase + 36 months)

Mission Support Rolling Storage (leverage DAAC as the primary archive & long-term
back up)

Self-sufficient storage size for production

Total Data Product Volume » Daily volume Forward processing: 95 TB/day

— During Bulk Reprocessing (peak): 475TB/day
Mission total (Forward): 105PB / 3 yr

- Mission total (Forward + Reprocessing): 163 PB

Need fast, large-scale scientific processing

4 jpl.nasa.gov

NASA-ISRO Synthetic Aperture Radar (NISAR)

Interferometric SAR (INSAR) Processing Workflow

DEM & Orbits

Stack-master swath
(can be multi-slice)

Pixel-by-pixel

lat,

Full burst m
Overlap regions [}

Sync between
3 swaths -

Merged

]

Merged bursts
& swaths

Burst-by-burst
fine Interferograms

lon, height

b 4

Stack of slave swaths
(can be multi-slice)

Interferograms

for each slave date

burst overlaps

time-series

time-series (NESD)

Resampled slave
bursts

Pixel-by-pixel
range, azimuth offsets
for each slave date

Sentinel-1 INSAR processing workflow example (Fattahi et al,

2016)

4/11/17

Multiple
compartmentalized steps

Each step might take
multiple inputs and
produce as much if not
significantly more output
data

— Ex: “Pixel-by-pixel lat, lon,
height” takes a radar image,
a DEM, and orbit information
and produces 5-7 output
images of the same size as
the input image

5 jpl.nasa.gov

INSAR Scientific Computing Environment (ISCE)

Overview, Modular Design

A flexible framework of INSAR software applications and algorithms

Configuration Parameters
+

Python data structures

Output files
+
Python data
Python wrapper class structures
Uses framework
Input files - /0, Configuration B
+
Python data
structures Python Bindings in C++ Groups of SAR

processing-specific
steps are packaged

Module core _
Optimized code in into plug-and-play
Fortran/C/C++ modules

Example of an ISCE “‘module”

4/11/17 6 jpl.nasa.gov

INSAR Scientific Computing Environment (ISCE)
INSAR Processing Steps

« Combination of legacy and novel applications to handle geocoding,
focusing, calibration, correction, and more

* Four INSAR processing modules relevant to this talk:

— Topo: Forward mapping geometry algorithm to convert an image in slant-range
coordinates to ground-range coordinates, as well as correct for topography

— Ampcor: Normalized image cross-correlation algorithm to generate a 2D
coregistration polynomial

— Geo2rdr: Inverse of the forward mapping geometry algorithm to convert an image
in ground-range coordinates to radar slant-range coordinates

— Resamp_slc: Image correction algorithm to resample a slave image against its
master image using coregistration polynomials or offset fields

« Each of the four modules is a good candidate for “GPU-ization”

7 jpl.nasa.gov

INSAR Scientific Computing Environment (ISCE)

Key Feature: OpenMP Parallelization

« Many algorithms repetitively apply a set of operations to single pixels

» Basic acceleration — leverage the cores in your CPU, split the
repetition

 OpenMP is a set of code “decorators” that can apply basic automatic
parallelization

— Thread 1: for (i=0; i<25; i++) { ...some work... }

#pragma omp parallel for —
for (i=0; i<100; i++) {
...Some work...

— Thread 2: for (i=26; i<50; i++) { ...some work... }

— Thread 3: for (i=51; i<75; i++){ ...some work... }

}

g _ _ _
(assuming 2 cores) — Thread 4: for (i=76; i<100; i++) { ...some work... }

8 jpl.nasa.gov

Project Goals

Driving guestion: Can we develop new versions of existing
ISCE modules (with an eye towards processing large
images like NISAR’s) that:

— Are vastly more parallelized than those using OpenMP

— Are algorithmically similar to the original modules

— Guarantee the same numerical precision as the original modules

This talk focuses on one highly parallelizable and
computationally intensive module: “Topo”

9 jpl.nasa.gov

ISCE’s Forward Geometry “Topo” Module

Overview

« Standard SAR processing module to convert a given input image in slant-
range coordinates to corresponding ground-range coordinates

* Module essentially solves:

C'D' = CD R;rouna X Rgiane * SIN Oincigence
B'C’ < BC for each pixel in the image using a reference DEM
1B « 4B « Corrects for shadow, layover, foreshortening effects

» Fortran algorithm took up to ~90 minutes for a large
Sentinel-1A SLC (roughly 20,000 x 60,000 pixels), even
with OpenMP parallelization

\‘Q\\ Optical Plane . .
\ 5 > A Forming an interferogram needs two runs of Topo, so for

¢ NISAR would need ~3 hours for this step alone

4/11/17 Ground Range 10 jpl.nasa.gov

Single-Instruction/Single-Data to /Multiple-Data

SISD Algorithm Design

* In SISD, a single algorithm
operates on single pixels

* General purpose CPUs are
iInherently SISD optimized

* For a given algorithm, wall-clock
runtime scales directly with number
of pixels

« Can be characterized by:

TCPU — Ntota,l_p’i:zzels X Tp'z}a}el

4/11/17

A\ AA 4

Algorithm

» T0

files...

Step 1
Step 2
Step 3

Write-to-file
Step 1
Step 2

etc...

Pixel 1
Pixel 1
Pixel 1
Pixel 1
Pixel 1
Pixel 2
Pixel 2

11 jpl.nasa.gov

Single-Instruction/Single-Data to /Multiple-Data
SIMD Algorithm Design

 In SIMD, many identical copies plijxjell|s
of an algorithm operate on
multiple “data streams” 3

* Instruction execution is slower
than that of CPUs due to
explicit operations that are
performed implicitly in > Tofiles...

e e et <o R

« ...but “hyper-parallelism” can
. " : Step 1 Pixel 1 Pixel 2 Pixel 3

easily mitigate this slowdown
Pixel 1 Pixel 2 Pixel 3

» Characterized by: Write-to-file Pixel 1 Pixel 2 Pixel 3
Step 1 Pixel 5 Pixel 6

2| 1 Algorithm “Copy” 1
Algorithm “Copy” 2

\ 4

A 4

A\ 4

Algorithm “Copy” 3

total_pizels pizel etc...

Tepu =
Npixels_per_block

Note: OpenMP is pseudo-SIMD, and already implemented in ISCE

4/11/17 12 jpl.nasa.gov

Single-Instruction/Single-Data to /Multiple-Data
GPU-based SAR Processing

» GPUs have shown to be effective accelerators for standard SAR
Image formation and processing before, ex:

— “Synthetic Aperture Radar imaging on a CUDA-enabled mobile platform” (Fatica

and Phillips, 2014) — SAR image formation and L1 processing on an embedded
GPU platform

— “SAR Image Processing using GPU” (Maddikonda and Sundaram, 2014) — SAR
L1.5 image processing, Digital Beam Forming, applying a “smoothing” filter
(denoising)

— “Techniques for Mapping Synthetic Aperture Radar Processing Algorithms to
Multi-GPU Clusters” (Hayden et al, 2012) — SAR L1 image formation and
processing, multi-GPU processing load distribution

« Question: Can we extend these types of results by accelerating

INSAR (at least L2) processing steps such as geocoding and
coregistration using GPU-enabled algorithms?

13 jpl.nasa.gov

Single-Instruction/Single-Data to /Multiple-Data
SISD-to-SIMD Module Conversion

» For ISCE specifically, four modules were identified for GPU algorithm
development
— | Topo|,|Ampcor|,|Resamp_slc|, Geo2rdr

 GPU modules were developed
with 3 steps:

— Refactor legacy Fortran code
and create an object-oriented
C++ equivalent

— Identify and examine the core
algorithm, and develop a new
GPU-accelerated CUDA code

— Develop module framework to
implement CPU or GPU code
depending GPU availability

4/11/17 14 jpl.nasa.gov

Development Foci
Simplicity, Similarity, Precision

Simplicity — To benchmark worst-case scenario, few CUDA- or
GPU-specific optimizations applied
— Example: Some advanced CUDA implementations allow for “dynamic

parallelism”, where a set of threads within a parallelized “kernel” can each spawn
their own kernel of parallel threads. Potentially faster, but more complex

Similarity — To allow for easier parallel codebase maintenance,
algorithms kept as identical as possible

— Example: Not replacing known functions with unknown ones from the CUDA
math libraries, e.g. a = sqrt(pow(b[0],2) + pow(b[1],2) + pow(b[2],2)) (known) versus
a =norm(3, b) (CUDA math library)

Precision — To ensure that results align with expected values from
C++ algorithm, refrain from implementing non-double-precision
functions

— Example: CUDA math library contains “intrinsics” which are GPU-optimized
versions of standard functions, at the potential cost of IEEE-754 compliant
precision

15 jpl.nasa.gov

Benchmarking Results
“Topo” Timing Results

Image Scale CPU Runtime GPU Runtime Speedup
COSMO-SkyMed 18 m 30 s 36x
NISAR 82 m 3 m 27.3x

« Two test scenes used:
— COSMO-SkyMed; 40 km x 40 km; ~4 x 108 pixels
— Sentinel-1A (NISAR-scale); 240 km x 240 km; ~1.2 x 10° pixels
 Hardware details:
— CPU: High-frequency Intel Xeon E5-2670, 12 threads enabled
— GPU: %2 NVIDIA Tesla K80, 1 GK210B GPU and 12 GB memory

« GPU runtime limited by AWS GovCloud I/O throttling,
limited memory bus speeds (common to all GPUS)

16 jpl.nasa.gov

Benchmarking Results
Rough “Topo” Implementation Costs

| CPU___ GRIDK520 _Teslakso

Runtime
(COSMO-SkyMed 18 minutes 3 minutes 30 seconds
scale)
Runtime
(NISAR/Sentinel- 82 minutes (est.) 20 minutes 3 minutes
scale)
Total “Topo” Runtime
(1400 NISAR-scale 1913.333 hours 466.666 hours 70 hours
interferograms)
Cost (per node) $.702 / hour $.702 / hour $.900 / hour
Estimated # of nodes 30 20 3
per day
Estimated cost per
$1,347.84 $336.96 $64.80

day
Total Speedup 1x ~B5X ~30x

17 jpl.nasa.gov

Summary

 GPU implementation of radar-to-ground coordinate mapping show
~30x speed improvement over OpenMP implementation on a CPU

« Further optimizations are possible, at the cost of added complexity
and dissimilarity to original code

* Three other modules have been “GPU-ized” with similar speedup in
all cases

« Module development time decreased significantly as most of the
code development focused on creating the proper logical structure
for the algorithms

— Note that these logical structures translated to other algorithms fairly easily

18 jpl.nasa.gov

Planned Future Work
“GPU-izing” the SAR processor

* Plan to implement several algorithms — range-doppler,
omega-K, hybrid approaches

* Must address large (30,000 x 30,000) images with large
synthetic aperture convolution kernels

* Must address non-uniform sampling along-track for
“SweepSAR” implementation

« Should be consistent with simplicity, similarity, and
precision principles previously described

« Leverage published GPU methods for SAR processing

19 jpl.nasa.gov

Questions?

Jet Propulsion Laboratory
California Institute of Technology

jpl.nasa.gov

