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Outline JPL

Energy balance of snow and ice

Controls on accelerated melt and reduced
accumulation

Controls of grain size and radiative forcing on changes
in albedo

Spectroscopy to quantitative retrievals

The Airborne Snow Observatory and moving to space
Constraint on hydrologic and climate modeling

This talk will produce a Science Traceability Matrix



Objectives for Cryosphere Missions  JPL

CRYOSAT — SCIENTIFIC OBJECTIVES A M a S S

The aim of the CryoSat mission is to determine
variations in {

ice cover and

Antarctic and I n h 9

ICE, CLOUD, AHD LAHD ELEVATION SATELLITE-2

contributing g

Jet Propulsion Laborat GRAVI
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ESat-2: Science Objectives

Mission IS L ER I ELER Rl Quantifying polar ice-sheet contributions to current and recent sea-level

change, as well as ice-sheet linkages to climate conditions.

Quantifying regional patterns of ice-sheet changes to assess what

drives those changes, and to improve predictive ice-sheet models.

« Estimating sea-ice thickness to examine exchanges of energy, mass
and moisture between the ice, oceans and atmosphere.

« Measuring vegetation canopy height to help researchers estimate
biomass amounts over large areas, and how the biomass is changing.

« Enhancing the utility of other Earth-observation systems through
supporting measurements.

CryoSat's 'roof"

= the seasonal cycle and
= the variation in the thic
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The GRACE twin satellites, launched 17 March 2002, are making detailed measurements of
Earth's gravity field changes and revolutionizing investigations about Earth's water reservoirs
over land, ice and oceans, as well as earthquakes and crustal deformations. The two GRACE
satellites have completed more than 13 years of continuous measurements!



& Mass change from GRACE and ICESat-1 ~PL

Northern Hemisphere
June Snow Cover Anomalies
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) Physical Parameter Requirements JPL
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@ Snow energy balance — SW dominates JPL
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@ Cryosphere Energy Balance Components -JPL

SOLAR RADIATION
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solar Reflection

radiation : by clouds
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@ Controls of grain size and RF on &

a, = f(GS, RE, O, E,)

Albedo

GS, = g(energy fluxes)
RF, = h(conc, GS, opt prop, part size)
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@ Melt uncertainties from £(GS)+¢(RF) JPL

| | Model Melt Uncertainty due to Uncertainty in GS and RF
oy Maximum Difference mm
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NCAR CESM + SNICAR, Flanner pers. comm



@« Where do we know that impurities are JPL
| impacting showmelt?
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But by how muchand how has
this impact changed?
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Glacial End of the Little Ice Age
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Huybrechts et al (2009)
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@ BCforced the End of the LIA in the Alps JPL

Winter Precipitation
(% of 1901-2000)

JJA Temperature
(AT from 1901-2000)

Normalized Glacier Length

Estimated BC Emissions (Tg/a)
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Present Day in the Swiss Alps JPL
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@ DS RFI #2 Science Questions JPL

Painter, Nolin, Seidel, and Skiles, Monitoring Cryospheric Albedo in a Changing
World: Filling the knowledge void on a key climate parameter

 What is the contribution of regional warming (including its
influence on snow grain size growth) and radiative forcing
by dust and black carbon to present day snow and ice melt?

 How will climate-driven and population-driven increases in
desertification and forest fires lead to accelerated snow
and ice melt and perturbation of the global water cycle and
regional water supplies?

 How will perturbations of snow and ice albedo impact
mountain and ice sheet glacier mass balance?

* For how long would reduction of radiative forcing by dust
and BC mitigate against increased melt and sea level rise
from climate warming?

http://sites.nationalacademies.org/DEPS/esas2017/DEPS_170397



Science Traceability Matrix JPL

NASA or ESA

or ISSl or DS Science

TOPC or ...
Science Goals

Objectives

Parameters

* What is the contribution of re- Snow and ice spectral albedo
gional warming (including its in- in 400-2200 nm spectral
fluence on snow grain size range with 30 nm spectral
growth) and radiative forcing by resolution by 0.03
dust and black carbon to present
day snow and ice melt? Spectrally-integrated snow

* How will climate-driven and popu-  albedo in the range 0.3-
lation-driven increases in deserti- 0.9 unitless, by 0.015
fication and forest fires lead to
accelerated snow and ice melt Show grain radius:
and perturbation of the global wa-  50-2000 um, by 20 um
ter cycle and regional water sup-

plies? Solar at-surface radiative
* How will perturbations of snow forcing by dust/BC/organics

and ice albedo impact mountain by 3 W m2

and ice sheet glacier mass bal-

ance?

» For how long would reduction of
radiative forcing by dust and BC

and sea level rise from clima
warming?

Science First, Spectroscopy Last
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HDRF

Snow property retrievals from AVIRIS SPL
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AJPLU

14 June 1996
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Research, doi: 10.1029/2005WR004509.
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Snow Property Retrievals from IS
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Spectral Albedo

Continuity requirements

AJPLU
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@ Changes in grain size and RF on @

AJPLU
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@ Measurement needs JPL
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@ Science Traceability Matrix JPL

Scientific Measurement Requirements
NASA or ESA

or ISSl or DS Science

a
4 @ s c
TOPCor ... Objectives 8 a g =
Science Goals o ‘é’ b “E’ £
‘0 © [T} = (=]
> — v — =
= © o © [}
o o o o o
» What is the contribution of re- Snow and ice spectral albedo Visible shortwave infra- Specfral range 350-2500nm
gional warming (including its in- in 400-2200 nm spectral red (VSWIR) radiance
fluence on snow grain size range with 30 nm spectral = spectra, 400-2200 nm:
growth) and radiative forcing by resolution by 0.03
dust and black carbon to present 40 nm precision at Spectral resolution <9nm
day snow and ice melt? Spectrally-integrated snow  400-900 nm for radiative

How will climate-driven and popu-  albedo in the range 0.3—  forcing due to dust and BC
lation-driven increases in deserti- 0.9 unitless, by 0.015 30 nm precision at 980-

fication and forest fires lead fo 1070 nm for snow grain SNR >100 (Vis)

accelerated snow and ice melt Snow grain radius: size >200 (NIR)

and perturbation of the global wa- ~ 50-2000 um, by 20 pm 10 nm precision at 740~

ter cycle and regional water sup- 780 nm for oxygen A-band 5

plies? Solar at-surface radiative ~ atmospheric correction Radiometric range 19 ﬁ:l?hﬂ'“
* How will perturbations of snow  forcing by dust/BClorganics 10 nm precision at

and ice albedo impact mountain by 3W m2 860-1020 nm and

and ice sheet glacier mass bal- 1050-1250 nm for water

ance? vapor corrections

Spatial resolution

For how long would reduction of
radiative forcing by dust and BC

mitigate against increased melt 38 km, nadir @
and sea level rise from climate Swath 500 km min
warming? altitude

Calibration:
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& Airborne Snow Observatory 2Bl

Snow Albedo

Snow Depth
* Riegl Q1560 dual e (CASI-1500 Imaging
laser scanning lidar Spectrometer

e 72 bands between
0.35and 1.05 um
e 40° field of view

* 1064 nm
* Full-waveform
e 60° field of view
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ASO Imaging Spectrometer Products
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Science Traceability Matrix

AJPLU

NASA or ESA
or ISSl or
TOPCor ...
Science Goals

DS Science

Objectives

What is the contribution of re-

gional warming (including its in-
fluence on snow grain size
growth) and radiative forcing by
dust and black carbon to present
day snow and ice melt?

How will climate-driven and popu-
lation-driven increases in deserti-
fication and forest fires lead fo
accelerated snow and ice melt
and perturbation of the global wa-
ter cycle and regional water sup-
plies?

How will perturbations of snow
and ice albedo impact mountain
and ice sheet glacier mass bal-
ance?

For how long would reduction of
radiative forcing by dust and BC
mitigate against increased melt
and sea level rise from climate
warming?

Scientific Measurement Requirements Mission Requirements

Physical
Parameters

Observable

Snow and ice spectral albedo Visible shortwave infra-

in 400-2200 nm spectral
range with 30 nm specfral
resolution by 0.03

Spectrally-integrated snow
albedo in the range 0.3

0.9 ynitless, by 0.015

Snow grain radius:
50-2000 pum, by 20 pm

Solar at-surface radiative
forcing by dust/BC/organics
by 3 W m2

red (VSWIR) radiance
spectra, 400-2200 nm:

40 nm precision at
400-900 nm for radiative
forcing due to dust and BC
30 nm precision at 980—
1070 nm for snow grain
size

10 nm precision at 740-
780 nm for oxygen A-band
atmospheric correction

10 nm precision at
860-1020 nm and
1050-1250 nm for water
vapor corrections

Parameter
Performance

Specfral range 350-2500nm

Spectral resolution <9 nm

SNR >100 (Vis)

> 200 (NIR)

1.9x Lamber-
tian

Radiometric range

Spatial resolution

38 km, nadir @
500 km min
altitude

Swath

Calibration:

Requirement

TED

TBD

TBD

TBD

TBD

TBD

TBD

Performance

LEO

11:00 LT;
nodal drift
over mis-
sion < 30
min

Etc.



Global spectroscopy to understand process
controls on melting cryosphere

Spectral HDRF

"o 10 15 20 25
Wavelength (um)

Collect global spectra

SIRFA's accurate
frequent-repeat
measurements will collect
globally-distributed spectra
throughout the Earth’s
cryosphere.

FO10

Spectral HDRF

05 10 15 20
Wavelength (um)

Map snow grain size and
impurity (BC/dust) loading
These key spectral features
captured throughout a melt
season provide regional
characterizations needed to
separate the physical
processes that have
contributed to accelerated
melting

o, N N

05 10 15 20 25
Wavelength (um)

Inform current snow and
ice models

SIRFA’s physical data will
‘replace” current empirical
data filling an unknown error
gap leading to more accurate
modeling of melt

Lorem Ipsum Dolor Amet

Better understanding of
processes accelerating
cryospheric melt

SIRFA determines and
communicates what
processes are controlling
global snow and ice melt
allowing the scientific
community to better project
how they will melt in the future
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Getting down to answers to “Why?”

AJPLU
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@ Where are we now? JPL

* NCAR team constraining WRF-Hydro
mesoscale modeling with ASO time series

* USDA ARS team constraining iSNOBAL
snowmelt model with ASO time series

e PNNL team constrain WRF-Chem mesoscale
modeling with ASO time series



@ ASO constraining distributed modeling JPL

Informs net solar forcing when
combined with terrain and cloud
corrected incoming solar

Estimated based on a decay
function from time of last storm,
and includes an impurity factor

Calculated in two bands to
account for spectral variation

e Visible (280-700 um)

* Near infrared (700-2800 pum)

[

Forcing Variables

Tharmal Dadiatign

Net Solar

Flecipiaduln vidss

Soil Temperature

Air Temperature

Vapor Pressure

Wind Speed \

iSnobal:

an energy balance
snowmelt
model

Latent Heat Exchange

Net All-wave Radiation
Sensible Heat Exchange
Snow/Soil Heat Exchange
Advection from Precipitation

Energy Fluxes

State Variables ]

Average Snow Liquid
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Measured vs Modeled Albedo JPL
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ASO measured albedo exhibits a larger dynamtc range, w:th a basm
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Spat:ally, modeled albedo is Iower at higher elevattons and htgher at
lower elevations
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Science Goals

DS Science

Objectives

Physical
Parameters

» What is the contribution of re-

gional warming (including its in- in 400-2200 nm spectral
fluence on snow grain size range with 30 nm specfral
growth) and radiative forcing by resolution by 0.03

dust and black carbon to present
day snow and ice melt?
How will climate-drive

Spectrally-integrated snow
albedo in the range 0.3

0.9 ynitless, by 0.015

popu-
eserti-

and perturbatio 50-2000 pm, by 20 um

Snow and ice spectral albedo Visible shortwave infra-

p "
£ g £ 5
5 E 5 5
8 & S g
@] o o (3
Specfral range 350-2500nm TBD
red (VSWIR) radiance
spectra, 400-2200 nm:
40 nm precision at Spectral resolution <9nm TBD
400-900 nm for radiative
forcing due to dust and BC
30 nm precision at QBQ— TBD

10 nm precision at 740-

ter cycle and regiona r sup- 780 nm for oxygen A-band 5

plies? Solar at-surface radiative  atmospheric correction Radiometric range 1.9x i!%;nbg;“ TBD
* How will perturbations of snow  forcing by dust/BClorganics 10 nm precision at

and ice albedo impact mountain by 3W m2 860-1020 nm and

and ice sheet glacier mass bal- 1050-1250 nm for water

ance? vap corrections Spatlal resolut|0|. TBD
» For how longg® duciin

radiative fogling by d

mitigate agd st incrg ed km, nadlr@ TBD

and sea leve cli km min

warming? altitude

Calibration: TBD

Scientific Measurement Requirements Mission Requirements

Performance

LEO

11:00 LT;
nodal drift
over mis-
sion < 30
min

Etc.



@ Acknowledgements JPL

* Part of this work was performed at the Jet
Propulsion Laboratory, California Institute of
Technology under a contract with NASA.

* Funding came from NASA Terrestrial
Hydrology, Cryosphere, and Applied Sciences.



