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Abstract—A new image processing method for automated hori-
zon detection is presented in this paper. This method was
developed for the Mars Exploration Rovers mission’s surface
operations to aid in determining orbiter visibility periods for
downlink data, and is now being considered for all Mars surface
missions and for a variety of applications. Starting with images
received from Mars rovers or landers, the horizon pixel location
is found by (1) obtaining the gradient images using the Sobel
operator, (2) calculating the preliminary horizon locations by
optimizing the maximum difference between sky and ground re-
gions in the gradient domain, and (3) applying a multi-variable
thresholding method. The results are analyzed using a variety of
images from the Mars rovers, as an example one dataset’s results
were categorized as 94.2% Good, 4.11% Okay, and 1.65%
Poor. The pixel location corresponding to the found horizon
in an image is converted to azimuth and elevation values using
the camera model. The elevation of the terrain surrounding
the rover or lander directly affects the duration orbiters are
visible for downlink data volume, and when the sun is visible
for image quality or solar energy consumption. Having an
automated process to detect the elevation of the terrain allows
the operation team to better predict the outcome of the plan,
reducing heath and safety risks and allowing new operational
limits to be defined.

TABLE OF CONTENTS

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
BIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1. INTRODUCTION
The Opportunity rover is approaching its 13th year of op-
erations on Mars and continues to collect valuable science
data, revealing clues about Mars’ past. The Opportunity rover
along with the identical rover, Spirit, makes up the Mars
Exploration Rover Project. These two rovers landed on Mars
in 2004, with the goal of learning about past water activities,
the composition of the surface, and how the terrain was
shaped on Mars. The horizon detection methods discussed in
this paper were developed for the Opportunity rover, however,
they are applicable to any Mars lander or rover.

Mars rover operations planning begins by receiving a down-
link from Mars, containing data regarding the current state
of the rover and any science or engineering observations that
occurred on the previous sol, or Martian day. The downlink
is analyzed to determine if everything went as expected in the
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last plan, and if all the necessary data has been received in
order to plan certain observations or activities on the current
sol, or next few sols. The plan contains everything the rover
will execute including drives, arm activities, science observa-
tions, imaging, and when to communicate with orbiters and
Earth.

The amount of data we receive from the rover can limit what
observations and activities can be planned on subsequent
sols. For example, if the expected imaging is not received,
there may not be enough information to plan a drive or
activities with the rover’s robotic arm. It is important to
know how much data volume will be received so science and
engineering teams know how to prioritize activities and the
order in which the data will be received.

Most commonly, data is received from the rover via a relay
through a Mars orbiter. The duration the orbiter is visible by
the rover directly affects the data volume the orbiter receives,
therefore the data volume Earth receives. One major impact
on the orbiter’s visibility is the local topography surrounding
the rover. If the rover is near high terrain, this can occlude
communication with the orbiter for some period of time,
shrinking the downlink data volume.

In order to mitigate unpredictable downlink data volumes due
to surrounding topography, the local horizon is determined
using the methods described in this paper. With these meth-
ods, the rover operations team can generate more accurate
estimates for downlink data volume with little manual effort
on a tactical timeline.

Horizon detection technologies in the image processing do-
main have been broadly studied and used for different pur-
poses. In [3], a robust horizon detection method is proposed
to aid in determining attitude for unmanned aerial vehicles.
The possible horizon profiles are extracted from red, green,
and blue bands of a RGB image, and then a adaptive threshold
algorithm is applied to find the final horizon profile. In [1],
a principal component analysis based method is proposed to
detect horizon profile for autonomous ground robot naviga-
tion.

The majority of the past work and research was conducted
using images or videos taken on Earth. An important factor
that must be considered is that there are no trees, buildings, or
other man-made objects on Martian surface. If these objects
are in images taken on Earth and they occupy entire columns,
then these columns need to be excluded from detected hori-
zon profiles. This additional step is usually computationally
intensive. In [1], a method using K-means clustering and
Mahalanobis distance is discussed for detecting and removing
these columns in images. As a comparison to the images
taken on Mars, there is no need to perform this step.

Often images taken on the Martian surface contain terrain
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far away from the rover or lander, where there is no distinct
separation between sky and ground regions. These regions
are defined as weak horizons. The lack of distinct separation
is often caused by atmospheric dust, which causes distant
objects to be less distinct. An example of an image containing
weak horizon is shown in Figure 1(b). The characteristics
of weak horizon in Mars images is similar to the horizon
seen in marine images or the horizon seen by unmanned
aerial vehicles at high altitude. Five different algorithms are
proposed and compared in [4] to specifically address the issue
of detecting horizons where there is no distinct separation
between sky and ocean regions; a method of optimization
using covariance matrix and eigenvectors is proposed in [2]
to detect weak horizons for unmanned aerial vehicles. Some-
times the actual horizon in images taken by the Opportunity
rover contain not only a weak horizon, but also a strong
horizon with a distinct separation between the sky and ground
regions. An example of an image that contains both weak and
strong horizons is shown in Figure 1(a).

(a)Both weak and strong horizon (b)Only weak horizon

Figure 1. Example of weak and strong horizons.

In order to resolve these issues, we propose a gradient-based
multi-thresholding horizon detection method. This paper is
organized into several sections to describe these methods. In
Section 2, the detailed algorithms are discussed and given
in pseudo-code. The performance of the proposed method
is analyzed in Section 3. Statistics and example results are
provided in Section 3 as well. Finally, conclusions for the
proposed method are drawn in Section 4.

2. METHODS
Image Preprocessing

The proposed algorithm to find the horizon profile requires a
grey scale image without any color information. If the input
image is color, it is converted to grey scale prior to processing.
Additionally, before applying the horizon algorithm, the salt-
and-pepper noise is blended in the image. This salt-and-
pepper noise presents itself as sparsely occurring white and
black pixels and affects the detected horizon profile. Apply-
ing a median filter in the spatial domain reduces this salt-and-
pepper noise in the input image. Note that the kernel size of
the median filter depends on the size of the noise, so it needs
to be set accordingly.

Gradient Image Calculation

Once the image is grey scale with the salt-and-pepper noise
removed, the gradient magnitude and the gradient direction
images are calculated using the Sobel operator. The horizon-
tal and vertical kernels of the Sobel operator are designed to
respond maximally to edges running horizontally and verti-
cally, respectively [7]. The horizontal and vertical kernels of

(a)Gradient magnitude image (b)Gradient direction image

Figure 2. Gradient magnitude and direction images.

the Sobel operator are defined as

h =

∣∣∣∣∣−1 0 1
−2 0 2
−1 0 1

∣∣∣∣∣ (1)

v =

∣∣∣∣∣ 1 2 1
0 0 0
−1 −2 −1

∣∣∣∣∣ (2)

where h is the horizontal component and v is the vertical
component. The horizontal gradient image Gx and the
vertical gradient image Gy are calculated by the convolution
of the kernel and the image.

Gx = I(x, y) ∗ h (3)

Gy = I(x, y) ∗ v (4)

where I is the grey scale image. The gradient magnitude and
direction images are then obtained by combining Gx and Gy
with the equations

Gmag =
√
G2

x +G2
y (5)

Gdir = arctan
Gy

Gx
(6)

where Gmag is the gradient magnitude image as shown in
Figure 2(a), and Gdir is the gradient direction image, which
measured in degrees, as shown in Figure 2(b). The gradient
magnitude and direction images are normalized for viewing
purposes.

Preliminary horizon detection

The optimization method used to find the preliminary horizon
profile in gradient domain is inspired by the covariance matrix
based optimization approaches in intensity domain, described
in [1] and [3]. Due to the characteristics of the images
acquired by the Opportunity rover, the optimization method
of finding the horizon profile in the gradient domain is not
always successful. Opportunity’s images often contain weak
horizon regions due to far away terrain in the image. In
these regions, the intensity level of the horizon is close to the
intensity level of the sky region causing the horizon profile
information to be found using this method to be inconsistent.
The weak horizon regions in the gradient magnitude image
are represented as weak edges. Note that these weak edges
are still significantly stronger than the edges in sky regions
caused by salt-and-pepper noise. The method to find the
preliminary horizon profile begins by defining the horizon
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profile function P (x):

1 ≤ P (x) ≤ H, 1 ≤ x ≤W (7)

where H and W are the height and width of the image respec-
tively, and P (x) determines the horizon profile position for
the xth column. To calculate the gradient magnitude of sky
and ground regions, the regions are defined with the following
equations:

Gs
mag = {(x, y)|1 ≤ x ≤W, 1 ≤ y ≤ P (x)} (8)

Gg
mag = {(x, y)|1 ≤ x ≤W,P (x) < y ≤ H} (9)

The gradient magnitude image contains changes in intensity
of the original image. Large changes in the gradient mag-
nitude image correspond to a busier activity scene in the
original image, and small changes in the gradient magnitude
image correspond to a smoother activity scene in the original
image. Therefore, the gradient magnitude image is used
to measure the busyness of original image. With the help
of equations (8) and (9), the gradient magnitude image is
logically divided into the sky gradient magnitude and the
ground gradient magnitude. The busyness levels, denoted as
Bs

avg and Bg
avg for the sky gradient magnitude and the ground

magnitude regions, are then calculated by finding the average
magnitude values, as shown in the following equations.

Bs
avg =

∑x
i=1

∑P (x)
j=1 Gs

mag(i, j)∑x
i=1 P (x)

(10)

Bg
avg =

∑x
i=1

∑H
j=P (x)+1 G

g
mag(i, j)∑x

i=1(H − P (x))
(11)

Note that Gs
mag and Gg

mag are the same size as the original
image. The ground region of Gs

mag and the sky region of
Gg

mag are filled with zeros. The preliminary horizon profile
is determined by finding the function P (x) that causes the
greatest difference between Bs

avg and Bg
avg , as shown in

Algorithm 1. Having a constant threshold value t strong

Algorithm 1 Calculate horizon profile function P (x)

1: procedure CAL TMP HORIZON PROFILE(t strong)
2: for x = 0 to img width - 1 do
3: P (x) = img height - 1
4: for y = 0 to img height - 1 do
5: if Gmag(y, x) > t strong then
6: P (x) = y

7: break
8: end if
9: end for
10: end for
11: return P (x)

12: end procedure

allows the horizon profile function P (x), and therefore the
average magnitude values of sky and ground regions in (10)
and (11), to be easily calculated. However, the constant
threshold value is not a constant number and is optimized
by searching in a 1 dimensional space. Once the optimal
t strong is found, the preliminary horizon profile function

(a)Preliminary horizon profile (b)Preliminary horizon profile

Figure 3. Preliminary horizon detection results (The
preliminary detected profiles are marked in red).

Ppre(x) is found by using the algorithm introduced in Al-
gorithm 2. The inputs t min, t max, and t increment
are user-defined parameters. These parameter values are set
based on image statistics, such as how many bits are used to
represent a pixel value and what level of noise is presented
in the image. Changing the t min and t max values do
not alter the resulting profile function, but only change the
computation time. The images acquired by the Opportunity
rover are 12-bit. By balancing the detection accuracy and
computational complexity, t min is set to 200, t max is set
to 1000, and t increment is set to 50.

Algorithm 2 Calculate preliminary horizon profile function
Ppre(x)

1: procedure CAL PRELIM HORIZON PROFILE(t min,
t max, t increment)

2: n =
t max− t min

t increment
3: for k = 1 to n do
4: J max = 0
5: t = t min+

t max− t min

n− 1
× (k − 1)

6: P = cal tmp horizon profile(t)

7: compute Bs
avg based on equation (10)

8: compute Bg
avg based on equation (11)

9: J = Bg
avg - Bs

avg

10: if J > J max then
11: J max = J

12: Ppre = P

13: end if
14: end for
15: return Ppre

16: end procedure

The preliminary horizon profile only shows the most obvious
edges, with some of these edges containing the true horizon
profile and some not. In general, if there is no weak horizon
presented in the image and the noise in the image is within a
reasonable level, then the preliminary horizon profile should
be accurately detected as shown in Figure 3(b). However, if
weak horizon is presented in the image, then the preliminary
horizon profile will be discontinuous as shown in Figure3(a).
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Weak horizon detection

Since the intensity of the weak horizon is similar to the
intensity of the sky, the corresponding edges in gradient
magnitude image are weak. The weak horizon profile is
detected by searching upwards in every column of the pre-
liminary horizon profile. It is quite often the case that the
preliminary horizon profile contains outliers and regions of
false horizon. In order to improve the accuracy of detecting
the weak horizon profile, a standard median filter described
in [10] is applied to the preliminary horizon profile function
Ppre(x) to set the positions of the outliers to the median
positions of its neighbors.

After the outliers have been refined, the preliminary horizon
profile will be in a state where some of the columns contain
the actual horizon profile and some columns still contain false
horizon lower than the true horizon. With the preliminary
horizon profile function, the sky region Gs

mag is refined as:

Gs
mag = {(x, y)|1 ≤ x ≤W, 1 ≤ y ≤ Ppre(x)} (12)

In order to study the Gs
mag region to find if a weak horizon is

present, a search process from the refined preliminary horizon
profile to the upper boundary of the gradient magnitude image
is performed. The process for finding the weak horizon
profile function Pweak(x) is provided in Algorithm 3 and
4. When clouds occur on Mars, they are quite thin so they
typically do not interfere with the weak horizon detection.

Algorithm 3 Calculate weak horizon profile Pweak(x)

1: procedure CAL WEAK HORIZON(t weak)
2: for x = 1 to W do
3: for y = Ppre(x) to 1 do
4: if Gs

mag > t weak then
5: if is pattern exist(x, y) then
6: Pweak(x) = y
7: end if
8: end if
9: end for
10: end for
11: return Pweak(x)

12: end procedure

In Algorithm 3, a threshold value t weak is introduced to
calculate the weak horizon profile Pweak(x). Its value is
estimated based on the similarity between the intensity of
the weak terrain region and the intensity of the sky region.
For the Opportunity rover’s images, the value of t weak is
set to 50. Algorithm 4 is used to determine the existence of
a horizon profile in a square area in the gradient direction
image. Once a position is marked as suspicious weak horizon
in Algorithm 3, it is further examined in Algorithm 4. If 1

3
of the gradient direction values within the square are close to
the direction of suspicious weak horizon, then the suspicious
weak horizon is classified as weak horizon. Then Pweak(x)
and Ppre(x) are merged into the combined horizon profile
function Pcombined(x) using Algorithm 5.

False horizon removal

The previous steps are applied on all input images regardless
of the image content. However, the input images may contain
no-sky regions or partial-sky regions. If the input images

Algorithm 4 Determine the existence of horizon pattern in
gradient direction image
1: procedure IS PATTERN EXIST(x,y)
2: box size = 20
3: counter = 0
4: interval = 10
5: for i = y−box size to y+box size do
6: for j = x−box size to x+box size do
7: if Gdir(y, x)−interval ≤ Gdir(i, j) ≤

Gdir(y, x)+ interval then
8: counter++
9: end if
10: end for
11: end for
12: if counter >

(box size ∗ 2 + 1)2

3
then

13: return TRUE
14: else
15: return FALSE
16: end if
17: end procedure

Algorithm 5 Calculate Pcombined(x) by merging Ppre(x)

and Pweak(x)

1: procedure MERGE

2: for x = 1 to W do
3: if Pweak(x) ≤ Ppre(x) then
4: Pcombined(x) = Pweak(x)

5: else
6: Pcombined(x) = Ppre(x)

7: end if
8: end for
9: return Pcombined(x)

10: end procedure

(a)Weak horizon all sky (b)Weak horizon partial sky

Figure 4. Weak horizon detection results.
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(a)No sky in the image (b)No sky in the image

Figure 5. Weak horizon detection results when there is
no sky in the images.

contain no-sky regions or partial-sky regions, the resultant
Pcombined(x) will contain outliers or a false horizon pro-
file. The outliers or the false horizon profile for the no-sky
columns need to be removed. Figure 4 and Figure 5 show
images with Pcombined(x) overlaid on top. In Figure 4(b),
a few columns on the left side of the image do not contain
any sky, and in Figure 5, both images contain no sky at all.
Using the previous proposed method, a false horizon profile is
detected. From the example shown in the analysis conducted,
the false horizon profile in Pcombined(x) always appears
to be discontinuous and very close to the upper boundary
of the image. To test discontinuities in Pcombined(x), the
absolute difference pdif of Pcombined(x) is calculated using
the equation defined below:

pdif =

W∑
x=2

|Pcombined(x)− Pcombined(x− 1)| (13)

A large pdif indicates that Pcombined(x) changes frequently
over the columns. In order to test whether Pcombined(x) is
close to the upper boundary of the image, the average position
of Pcombined(x) is calculated as denoted below:

pavg =
1

W

W∑
x=1

Pcombined(x) (14)

A small pavg indicates that Pcombined(x) is close to the upper
boundary of the image. With the help of these two equations,
a recursive method of finding final horizon profile Pfinal is
given in Algorithm 6. The method cal final horizon requires
six input parameters. The parameters start and end values
indicate the range of Pcombined(x), where the false horizon
needs to be removed. In general, these values are set to 0
and the image width, respectively. Parameters avg t1, avg t2,
dif t1, dif t2 are used to describe the constraints to remove the
false horizon, which avg t1 and avg t2 define the intervals of
horizon position for testing pavg , and dif t1 and dif t2 define
the intervals of horizon absolute difference for testing pdif .
In practice, avg t1 is set to 10, avg t2 is set to 30, dif t1 is set
to 2, and dif t2 is set to 20. An example of the final horizon
profile overlaid on top of the input image is shown in Figure
6(a). More results are shown in Section 3.

Converting to azimuth and elevation

Each camera on the Opportunity rover has a corresponding
camera model, which is a set of numbers and vectors describ-
ing the geometry of the camera optics [9]. The camera model
is derived from images taken of calibration targets at a fixed

(a)Final horizon profile (b)Final horizon profile plot

Figure 6. Final horizon profile and its corresponding
plot.

azimuth and elevation. A camera model allows each point in
space seen by the camera to be traced to a pixel location in the
image, as well as each pixel located in the image to be traced
to a position in space. Having an accurate camera model is
necessary to generate many products used for Mars surface
operations.

After using the methods described above to find the horizon
profile in an image, the camera model is used to convert these
image pixel values to azimuth and elevation values. Having
the horizon profile in azimuth and elevation, rather than pixel
values, allows the user to better understand the meaning of
the horizon profile and makes it directly comparable to the
location of orbiters, which are also computed in azimuth and
elevation. Figure 6(b) is a plot displaying the elevation of
the horizon profile, built by converting each pixel location
in the horizon profile to azimuth and elevation values using
the camera model. Note that the rover was tilted on a
hillside when the image was captured; consequently, the weak
horizon appears on an angle in the image. The weak horizon
is actually horizontal, as reflected in the plot. The method
of finding the azimuth and elevation values of the horizon
using the camera model considers the rover’s tilt, therefore
providing accurate horizon information.

3. RESULTS
The testing dataset consists of 243 16-bit, grey scale images
acquired by the Opportunity rover between sols 1 and 4320.
Most commonly in operations, the input images used to find
the horizon profile are taken with the navigation cameras
(navcam) [9], therefore the majority of the images in the
dataset are navcam images. In order to test the precision
of the proposed method with the other cameras on the Op-
portunity rover, a small number of the images acquired by
the panoramic camera (pancam) and front hazard avoidance
camera (front hazcam) [9] are also included in the dataset.
As a result the testing dataset contains 223 navcam images,
10 pancam images, and 10 front hazcam images. All of the
images in the testing dataset are radiometrically corrected to
remove the effects of exposure time and temperature[8].

For validation purposes, the final horizon profile is plotted
on top of the input image in order to visually determine
the accuracy of the detected horizon profiles. Examples
are shown in Figure 3. The horizon profiles are examined
manually, and then classified into three categories: ”Good”,
”Okay”, and ”Poor”. If the detected horizon profile covers
more than 95% of the actual horizon in the image, then it
is classified as ”Good”; if the coverage is between 80% and
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Algorithm 6 Calculate final horizon profile Pfinal(x)

1: procedure CAL FINAL HORIZON(start, end, avg t1,
avg t2, dif t1, dif t2)

2: W = end− start

3: calculate pdif using equation (13)
4: calculate pavg using equation (14)
5: if pavg ≤ avg t1 or (pavg ≤ avg t2 and pdif ≥

dif t1) or pdif ≥ dif t2 then
6: for x = start to end do
7: Pfinal(x) = -1
8: end for
9: else if pavg > avg t2 and pdif < dif t1 then
10: for x = start to end do
11: Pfinal(x) = Pcombined(x)

12: end for
13: else
14: if end = start + 2 then
15: for x = start to end do
16: Pfinal(x) = -1
17: end for
18: else
19: mid = bend− start

2
+ startc

20: cal final horizon(start, mid, avg t1, avg t2,
dif t1, dif t2)

21: cal final horizon(mid, end, avg t1, avg t2,
dif t1, dif t2)

22: end if
23: end if
24: end procedure

95%, it is classified as ”Okay”; and if the coverage is below
80%, it is classified as ”Poor”.

The proposed method heavily relies on the selection of the
threshold values, which varies depending on the conditions
when the images were acquired. For operations, a quick-look
version of horizon profile is generated using default threshold
values in order to generate the product on a tactical timeline.
If the quick-look version is unsatisfactory, a revised version
is generated by adjusting the threshold values. The horizon
profile results are categorized using the default threshold
values and the adjusted threshold values, shown in Table
1. Generally in Opportunity rover operations, as long as
the detected horizon profile covers more than 80% of the
actual horizon, the detected horizon profile is considered
acceptable. The percentage of ”Good” plus ”Okay” using
the default threshold values is 88.9%, and the percentage
of ”Good” plus ”Okay” using adjusted threshold values is
98.3%. These statistics indicate that the proposed method
meets the operational requirements.

In addition to analyzing the testing dataset as a whole, it was
also studied by individual camera and image contents. Table
2 shows the percentage of coverage categories by camera
using adjusted threshold values. The proposed method works
the best on navcam images, where 98.9% of the detected
horizon profiles fall into ”Good” category. Opportunity’s
robotic arm is present in the sky region for most of the

Table 1. Percentages of coverage categories for the entire
dataset

default threshold adjusted threshold
Good 63.8% 94.2%
Okay 25.1% 4.11%
Poor 11.1% 1.65%

Table 2. Percentages of coverage categories by
individual camera using adjusted threshold values

Navcam Pancam Front Hazcam
Good 98.9% 80% 10%
Okay 0.9% 10% 70%
Poor 0.4% 10% 20%

front hazcam images [11], causing disturbance in the horizon
profile and thus 70% of the front hazcam images fall into the
”Okay” category. Table 3 contains the horizon profile results,
separated by the amount of sky in the image. 100% of the
time, no horizon profile is found for images containing no
horizon. The next best results are found for images containing
sky across the entire top of the image. The horizon profile is
most difficult to find in images that have both sky and terrain
at the top of the image such as in Figure 7(d), 7(e), and 7(f).
However, even in these images, the horizon profile statistics
are still sufficient to meet operational requirements.

4. CONCLUSION
The horizon profile method proposed in this paper is con-
structed by considering several existing methods and opti-
mizing the process for the surface of Mars. By combining
the relevant steps of horizon detection for unmanned aerial
vehicles and autonomous robot navigation on Earth, a horizon
detection method is developed for Mars rovers and landers.
With this method, the horizon profile found meets the require-
ments for operational use 98.3% of the time.

Using image processing to determine the location of the
horizon surrounding the rover allows the rover operations
team to quickly and accurately assess visibility periods for
orbiters, and therefore downlink data volumes. Having accu-
rate downlink data volumes at the beginning of the tactical
day allows the operations team to prioritize observations and
activities and to ensure the necessary data is collected in order
to plan the following sol.

While the horizon detection method was developed for de-
termining downlink data volumes, it can also be used to
determine when the sun is directly visible by a Mars rover

Table 3. Percentages of coverage categories by
completeness of sky regions using adjusted threshold

values

no sky partial sky all sky
Good 100% 86.7% 95.6%
Okay 0% 11.1% 2.8%
Poor 0% 2.2% 1.6%
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 7. The detected horizon profiles are marked in red. (a)-(c) weak horizon. (d)-(f) partial horizon. (g)-(h) smooth
horizon. (i) Pancam. (j) no sky. (k) front Hazcam (l) strong sunlight in the image.
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or lander. This will allow the operations teams for solar
powered rovers and landers to know when the solar panels are
in direct sunlight to accurately generate energy predictions.
In addition, knowing if the sun is visible by the rover or lander
can support image quality predictions. If the sun is in the
image frame, it will wash out the image and may not allow
the data products generated by the image to be usable.

At this time, the horizon detection method has been func-
tional in operations for the Opportunity rover for over 100
sols and has proven extremely beneficial. The operations
team has been able to predict downlink data volumes more
accurate and faster than ever before. The horizon detection
method will continue to be used by the Opportunity rover,
and is currently being considered for the Curiosity rover and
other future Mars missions.
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