Aligning Optical and
Radiometric Reference Frames:

Using Gaia and VLBI Data
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Astrometry: measures positions in the sky, 5000+ years history !

Credit: Heritage Malta
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Introduction: Tying Optical and Radio Celestial Frames

* Motivation: Deep Space Navigation in Optical Era
Optical communications is driven by potential for order of magnitude

increase in data rates to deep space missions e.g. Hi-Def video from Mars.

Optically based missions will want optical navigation which calls for an

optical celestial reference frame (“star” catalog, “star” map).

e Good news: ESA funded $1B Gaia optical frame of over 1 billion sources

Bonus: positions/velocities of > 200K solar system objects!

* However, Deep Space navigation, planetary ephemeris, Earth orientation, even
definition of coordinates on the sky (ICRF) all currently use Radio-based system.

* Need to seamlessly connect existing radio-based products to the new optical frame.
Accuracy needed: better than 1 part-per-billion.
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Introduction: What objects can we use?
Methods for Tying Optical and Radio Celestial Frames

 Need common objects well measured in both optical and radio

® Radio stars: Previous generation used galactic stars that emit in radio,
Crude by today’s standards: difficult to achieve desired accuracy level.
e.g. Lestrade et al. (1995).

e Thermal emission from regular stars:
350 GHz astrometry using Atacama Large Millimeter Array (ALMA)

Fomalont et al. (pilot observations)
Verifies bright end of optical, but likely limited to 500 — 1000 pas (2.5 to 5 ppb).

e Extra-galactic Quasars: detectable in both radio and optical
potential for better than 100 pas to 20 uas (0.5 to 0.1 ppb).

Strengths: extreme distances (> 1 billion light years) means no parallax or proper motion
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The Source
Objects



Example Extragalactic Source:
Centaurus-A in X-ray, Optical, Radio

CHANDRA X-RAY DSS OfPTICAL NRADO RADIO NRAO RaDIO
CONTINUUM (21-cM)

Credits: X-ray (NASA/CXC/M. Karovska et al.); Radio 21-cm image (NRAO/VLA/Schiminovich, et al.),
Radio continuum image (NRAO/VLA/J.Condon et al.); Optical (Digitized Sky Survey U.K. Schmidt Image/STScI)
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Positions differences from:
* Astrophysics of emission centroids
- radio: synchrotron from jet
- optical: synchrotron from jet?
non-thermal 1onization from corona?
big blue bump from accretion disk?

e Instrumental errors both radio & optical

e Analysis errors
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Optical vs. Radio positions
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Credit: Wehrle et al, uas Science, Socorro, 2009
http://adsabs.harvard.edu/abs/2009astro2010S .310W
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IR UV, Optical Emission
Emission X-Ray Emission Narrow-Emission-Line Clouds
Broad-Emission-Line Clouds /
_ Helical Magnetic Field

mm-Wave Core

Shock/Superluminal Knot (Radio to Gamma-Ray)

Acceleration and
) Collimation Zone

r=0| 102 10*° 10* 10° 10°® 107 Schwarzschild Radii

R~0.1-1 pas Imas

Features of AGN: Note the Logarithmic length scale.

“Shock waves are frequency stratified, with highest synchrotron frequencies emitted only close to the
shock front where electrons are energized. The part of the jet interior to the mm-wave core is opaque at
cm wavelengths. At this point, it is not clear whether substantial emission occurs between the base of the
jet and the mm-wave core.”

Credits: Alan Marscher, “Relativistic Jets in Active Galactic Nuclei and their relationship to the Central Engine, ’
Proc. of Science,VI Microquasar Workshop: Microquasars & Beyond, Societa del Casino, Como, Italy, 18-22 Sep 2006.

Overlay (not to scale): 3 mm radio image of the blazar 3C454.3 (Krichbaum et al. 1999)
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Optical vs. Radio systematics offsets
B Optical images of quasars

—

1418+546 15144192 1546+027

 Optical structure: The host galaxy may not be centered on the AGN or may be asymmetric.
* Optical systematics unknown, fraction of millarcsecond optical centroid offset?
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The goal:

Alignment into Common Frame



Optical-Radio
Frame Tie Geometry

Frame tie task will determine

3 small rotations (R, 3)

between the individually

rigid, non-rotating radio and optical
frames to sub-part per billion level

Radio (VLBI) Frame is current
official IAU definition of o, o

Used for Nav trajectories,
JPL planetary ephemeris,
Earth Orientation. . .
essentially everything

Allows seamless integration

into united frame.

More than 1 billion objects will be
integrated into common frame!!

Frames objects to < 100 uas 0.5 ppb.
want tie errors 10X smaller.

Gaia optical frame will be
a rigid non-rotating frame
also based on quasars

Also of sub-ppb precision
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The Optical Frame



ESA’s Gaia optical Astrometry

* Method: extremely accurate centroid of CCD pixels

e Astrometry & photometric survey to V = 20.7M28
~10° objects: stars, QSOs, solar system, galaxies.
— Need to tie to existing radio frame so that this

wealth of objects can be of use to JPL
e Gaia Celestial Reference Frame (GCRF):
— Optically bright objects (V< 18mag) give best precision

— 1st release Gaia astrometric catalog DR1 Sep 2016, 2nd Apr 2018. @k esa
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The Radio Frame
using
Radio Interferometry
(VLBI)



Radio Interferometry: Long distance phased arrays

Very Long Baseline Interferometry
1s a type of station differenced range
from a phase array

* Measures geometric delay by cross-correlating
signal from two (2) stations

T=Bes/c

Correlator

Baseline B | W

T=BXcos{ 9 /¢ — Tl
1
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Vlaps credit: Goog

ESA’s Argentina 35-meter antenna adds 3 baselines to DSN’s 2 baselines
 Full sky coverage by accessing south polar cap
 near perpendicular mid-latitude baselines: CA to Aust./Argentina

2017 Feb 16, C.S. Jacobs Jacobs et al, EVGA, 2013 http://adsabs.harvard.edu/abs/2013evga.confE...1J




Results



VLBI 32 GHz Radio Results
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* Collaboration with Argentina and ESA to extend DSN reach to SPC
e Detected 674 sources. 100+ sessions, SOK group delay/phase rate obs
Approximately 100 pas precision, 400 pas systematics
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Tying optical and Radio Celestial Frames
Gaia optical (DR1-aux) vs. 32 GHz VLBI

* Tying to Gaia’s optical frame using Gaia preliminary release (DR1-aux)
 Approx. 500 pas optical precision per object, ~100 pas precision in radio

* Gaia archive http://gea.esac.esa.int/archive/)
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— 412 common sources (-7 outliers), including 184 ICRF2 ‘““defining”’ sources
— 25 pas (0.1 ppb) precision in 3-D rotation angles,
— Systematics ~ 500 pas(2.5 ppb)

Gaia_DR1—aux—1680914 — xka

Distribution of 412 Sources
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Summary: Tying Optical & Radio

* Goal: Tie of optical and radio celestial frames for oo o 45 oo
deep space navigation and astronomical applications. s L
£ / ‘
32 GHZ Radlo
e Roadmap: ) \ i

— Preliminary optical & radio data are in-hand.
— Increase number of sources in common between optical and radio
— Expect to be limited by systematic calibration errors

— Quantify and reducing systematics by

— getting data in three radio bands (8, 24, 32 GHz)
— Compare independent analysis chains
— Image sources in radio to quantify non-pointlike structure

e Preliminary results: Gaia_DR1-aux alignment vs. VLBI
— Excellent 3-D tie precision of ~ 20 pas. Gaia
— Systematic errors 200 — 500 pas. Optical
— 32 GHz radio work very efficient, ppb synthesized beam, more compact objects

— Control of systematics will require increased southern hemisphere observations.
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