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Introduction & Background

Develop and improve techniques required to analyze
the deployment of large deployable space structures
* Aiding design, predicting deployment behavior,
and provides insight into anomalies
* Verification prior to flight, as an augmentation to
test, gravity effect mask the true dynamic
behavior
Traditionally, multi-body dynamics solvers (large angle
motion and large displacements) have been used
* Hybrid method - component nonlinear FE results
within a multi-body dynamics solver as a
simplified part
* Cannot model slack soft-goods materials nor
effects of local mechanism imperfections,
essential for investigating possible snags and
anomalies
Evaluate capabilities of nonlinear finite element 4
solvers Soil Moisture Active &
Passive (SMAP)
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MARSIS booms




MARSIS Antenna Booms Deployed on May 2005

* MARSIS antenna employs a total of three FFT booms made of composite
tubes with lenticular joints: two that form a 40 m dipole and the third
acting as a 7-m monopole antenna

Stowed energy is achieved by compressing During deployment hinges unfold |,
the segments to half their diameter and add hinge torque energy
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Stowed MARSIS antenna FFT booms and cradle Lenticular joint was characterized with
before launch ABAQUS and testing
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MARSIS Antenna Booms Deployed on May 2005

* The deployment was achieved by release of \ % ]
stored strain energy in an uncontrolled and T i—————f—fﬂ_j -0
dynamic event: o \“A"‘"‘l—@ o

* Extremely high stored energy resulted in / \\"“\\E
a chaotic deployment s

* A hybrid technique was used [ o

* Adams multi-body dynamics was used for J." \D f@‘:”/ -
on-orbit deployment predictions | o /

* Lenticular joints were characterized using A \@ :

ABAQUS and testing \ s e

* Contact between segments and within /
individual hinges //\ ] . )

e Large rigid body motion plus large <_ \U {:;f]j]':‘“///
elastic/plastic displacement T o

ADAMS Simulation at Different Deployment Stages
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SMAP Reflector was Deployed on March 2015

Structure is made of: Flexible
members, mechanical joints, with
or without free play (spherical,
cylindrical, sliding), and soft goods
(tapes, cable, mesh)
Deployment was achieved by a
combination of uncontrolled stored
strain energy release (bloom) and
motor actuation through cables,
gears, linkages
Contact between:

* Different parts

* Within individual parts
Large rigid body motion plus large
elastic displacement

ADAMS Simulation: Stowed, Bloom, Crenellation, Full




SMAP AstroMesh Reflector Bloom
System Level GSE Model Correlation to GSE Tests

ADAMS Bloom simulation JPL Bloom test on 09-09-2014

This study was done as a part of JPL’s risk review
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Approach

Evaluate the capability of existing software and technology
* Multi-body dynamics
* Nonlinear FEM
* Hybrid of two methods
Develop a series of benchmark problems that are applicable
to large deployable structures
Analyze these benchmark problems using:
*  ADAMS multi-body dynamics — Implicit method
e LS-Dyna nonlinear finite element (FE) code — Explicit
method

* Sierra large scale parallel nonlinear FE code- Implicit and
Explicit methods .\.'\_.

Recommend new approach and technology:
* Near future ’
* Longterm k

Validate the selected analytical methods for a large assembly

applicable to current projects at JPL [2017] - ‘\-/ \.
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Benchmark Problem 1: Flexible Pendulum

Motivation for this problem:
* Evaluate the nonlinear FE
capabilities for large rigid body
motion in addition to elastic
deformation
* Evaluate behavior during contact
between different parts it i
ADAMS: Flexlink, Flexbody, and
FE_Part
LS-Dyna: Beam, shell, and solid
Sierra: Beam, shell, and solid
Maximum rotational angle after
impact and initial peak force are
compared
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Flexible Pendulum: LS-Dyna - Shell Elements

Shell Element Contact Force
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Flexible Pendulum: LS-Dyna - Beam, Shell, and Solid
Elements

\

* Model with solid elements moves /
slower resulting in a lower impact force /
and travel, possible numerical error /

Model with shell elements should provide the best results



Flexible Pendulum: Summary

Closed-
FE Solver
MBD Solver .. Form
(model decomposition not tuned) .
Solution
. . Beam
Element Type Flexlink Flexbody FE Part Beam Shells Solids
_ Theory
Max rotation after 23.89 24.16 24.66 24.87 22.94 18.3 24.55
contact (deg)
First Contact
Force Peak Fm 57.1 57.6 54.1 55.1 614 50.6 62.4
[N]
Max.Contact
Force Fm [N] 109.4 114.6 107.2 108.3 121.1 96.3
. . 1 hour . 5 min 2 hours
CPU Time 5 min 36 min 15 min 30 sec 30 min 17 hours
Number of CPU 8 8 1 CPU 4 16 16
cores
GSTIFF, GSTIFF, GSTIFF, MPP/
Solver Type SI2 SI2 SI2 SMP MPI MPP/MPI
Number of 83 Parts | 008 solid | gy ams 192 2876 8380
elements elements
Rigid Reduced Element
parts are FE model, 1 CPU Adjusted Adjusted type not
Notes connected | 78 modes core Contact Contact adequate
through for each limitation settings settings for
forces part geometry




Benchmark Problem 2: Contact between a Flexure and a
Bump

Motivation for this problem:

* Evaluate large displacement

between two parts

* Characterize semi stiff contact
Bump angle is 60 degree and
Flexure angle is 55 degrees, line
contact
ADAMS: Flexlink, Flexbody, and
FE_Part
LS-Dyna: Beam, shell, and solid
Sierra: Beam, shell, and solid
Peak forces are compared

L,
Time: 0.000000
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Flexure-Bump : ADAMS

Flexure Bump - Flex on Flex

12.0
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Benchmark Problem 2: LS-Dyna — Beam Element/Rigid Contact

v=4mm/sec v=40 mm/sec
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Flexure-Bump: Summary

Flexure and Bump Results for v=0.004 m/sec — Results Summary

Bump MBD Solver FE Solver
v=0.004 m/sec (no reduced FE or mass scaling)
Bump
Case Description Element X-Force | Runtime Element Bump Runtime
Type IN] Type X-Force
Both flexure and Solids 3 hours 126 8 hours
bump are flexible (reduced 10.5 50 mins Solids (10.2 N filtered) 55 mins
FEA)
ekl v I S I ISTER
FEA) '
Flexure arm is Solids Under 2 mins Solid 13.0 3 hours
flexible, bump and | (reduced 10.0 OHes ©.6N f.iltere d) 8 mins
flexure tip are rigid | FEA) '
Flexure arm is Under 2 mins 16 mins
flexible, bump and Beams 10.0 Beams ! 1'.9
. .. (FE_Part) (10.4 N filtered)
flexure tip are rigid




Benchmark Problem 3: Double Straps

Motivation for this problem:
* Evaluate highly flexible parts with large
displacements and contact
* Establish stored strain energy
Straps and moving cart are modeled in a deployed
configuration
Simulations:
* Quasi-static stowing with gravity (ground)
* Quasi-static deployment to determine
deploying force

* Dynamic deployment with gravity (ground) -
* Dynamic deployment without gravity (on-orbit) \-/ \-

ADAMS: FE_Part, beam elements
LS-Dyna: Shell elements

Sierra: Shell elements ADAMS: Deployed, stowed, during deployment
Force profiles are compared
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Double Straps: Summary

LS-Dyna simulation is shown

Shell Elements

Gravity was applied initially
Velocity control was used for cart
motion, applied at 0.5 sec after
steady-state condition due to
the gravity was achieved

Runtime is about 1.5 hours

12/19/2016

Joint Force for Straps Made of Reduced Integrated Elements EL2

iitical Damping | | Critical Diamping
pplied Expired

Applied Gravity | L
)

Structurg is in STATIC condition,
Mo disturbances!

Joint 4131 - % Force

=T - ] -
b= Stowed Joint Force
5 06 F=-0.0247595 M
N2 Frequencies J
0
-0.2 T - . .
0 2 4 1 i 10 12 14 16 18 20
Time (s)
Loadease 1 : Time = 0.000000 : Frame 1
ADAMS LS-Dyna Sierra
Element Beam (FE Part) Shell Shell
Maximum Stowing Force [N] 0.026 0.025 0.025
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Double Straps: LS-Dyna — Shell Elements

Gravity was applied initially
Displacement control was
used for cart motion (step
velocity), applied at 0.5 sec
after steady-state condition
due to the gravity was
achieved

12/19/2016
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Benchmark Problem 4: Fabric & Straps

Motivation for this problem: Fabric Thickness of all four
* Evaluate highly flexible parts with large  edges should be 5x the
. thickness of the fabric, width of Radial mation
displacements and contact thick edge should be 9.5250 mm o / Radalmotor
* Establish stored strain energy \8 Vl/ and back
. . B
Straps and moving cart are modeled in a deployed X ) 4 °
Configu ration | r*"ffr Attach fabric to
. . . ® . straps
Simulations: 50.8 mm

* Quasi-static stowing with gravity (ground) y — EPU-B mm =

* Quasi-static deployment to determine ., . / .TH\___

deploying force .
* Dynamic deployment with gravity (ground) a Tutf_n on gravity y . p fsgfzz::"hgcdéf:;:ﬁlj
. . . . irection going inside
* Dynamic deployment without gravity (On-OI’bIt) the page, fabrics is the I centeris 25.4 mm
LS-Dyna: Shell elements simulating membrane only bottom part )
* Displacement control was used for applied
motion
* Both gravity and forced displacement started Fabric and Straps Model
at time zero
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Straps and Fabric

Quasi-Static Stow with Gravity,
Dynarnic Deployment with Gravity

Quasi-Static Stow/Deploy with Gravity

T X
Loadcase 1: Time = 0.000000 : Frame 1 ”E

Quasi-Static Stow with Gravity,
Dynarnic Deployment without Gravity

Loadcase 1 Time = 0.000000 : Frame 1 Loadcase 1: Time = 0.000000 : Frame 1
1 1 1
Fe1 CFC1 Fy1 CFC1 Fe1 CFC1
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N | \ | ‘1
05 \ | 05 05 |
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.
L]
Runtime: 3.5 hours
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Five Straps

|@uaS|—Slat|c Stow/Deploy with Gravity ‘ Cluasi-Static Stow with Gravity, Quasi-Static Stow with Gravity,
Dynaric Deployment with Gravity Dynarnic Deployment without Gravity

¥ X
/ERX Loadcase 1: Time = 0.000000 : Frame 1 Y/E\ Loadcase 1 Time = 0.000000 : Frame 1 M/!&\\X Loadcase 1: Time = 0.000000 : Frame 1
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Fx2-CFCT 0211

Force (M)
Force (M)

2 4 [ a 10 12 0 2 4 6 ] 10 12
Tirne (s) Time (s) Time (s)

12/19/2016 ©California Institute of Technology, Government Sponsorship acknowledged 21




Fabric

Quasi-Static StowiiDeploy with Gravity

Quasi-Static Stow with Gravity,
Dynamic Deployment with Gravity

Quasi-Static Stow with Gravity,
Dynamic Deployment without Gravity

X, ¥ ¥ ks v
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Fabric
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Fabric — More Flexible by a factor of 100

Quasi-otatic Stow/Deploy with Gravity
E_fabric=E/100

Quasi-Static Stow with Gravity,
Dynamic Deployment with
E fabric=E/100

Loadcase 1 Time =0.000000 : Frame 1 Y’/QX Loadcase 1 Time = 0.000000 : Frame 1

Cuasi-Static Stow with Gravity,
Dynamic Deployment withaut Gravity
E fabric=E/100

Loadcase 1 Time =0.000000 ; Frame 1

0.04 - 0.04 0.04
D'mk — —Fy1CFCT 0.03 — — Fyl1 CFC1 0.03 — —Fy1CFCT
— — 1 CFCT — — F1CFC1 — — 1 CFCT
0.0¢ 0.0¢ 0.0¢
= DTN — =y CFCT = DOTEN — = Fy2CFCT Eﬂm'ﬂ"\ — = Fy2 CFC1
“G—; T e __——F:-:2EFE1 “G—; I P P — — Fw2 CFCH “G—; e T — —FCFC
N e v A B s
i -u.m?{f P8 -u.m?f L0~
-D.DE-h | -D.DE-h -D.DE-h
-0.03 | -0.03 -0.03
-0.04 - - - . — -0.04 . - . - . -0.04 - - . - -
P 4 b i 10 12 0 ¢ 4 b d 10 12 P 4 b d 10 12
Time (s) Time [s) Time (s)
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Fabric — More Flexible by a factor of 100

4
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Fabric and Straps — Fabric, More Flexible by a factor of 100

Cuask-3tatic Stow/Deploy with Grawity
E_fabric=E/100

Quagi-Static Stow with Gravity, CQuagi-Static Stow with Gravity,
Oynamic Deployment with Gravit Dynarnic Deployment without Gravity
E_fabric=1/100 E_fabric=1/100

WE‘X Loadcase 1 Time = 0.000000 : Frame 1 VE‘X Loadcase 1 Time = 0.000000 : Frame 1 Y’/E“‘X Loadease 1: Time =0.000000 : Frame 1
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04 | Fl CFC Fl CFC T 03754 | Rl CFC T
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= 02 o ——F2LrC —FRRFCT | o RN —— F2LFC T
=0 b, —— FROT —rorret | =018 g —— LR
o 14 O 1%5n
2 2 n.1253

103 01,251

4 0375

57 . -05 .

I Z 4 B B 10 8 10 0 Z 4 b B 10 12
Time (5] Time (5) Time (s)
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Conclusion

Benchmarks are introduced for evaluating the performance of numerical simulations
of space deployable structures with:
* Large angle motion, contact between flexible bodies, and the presence of both
soft and stiff mechanical components
* The benchmarks were used in companion studies to evaluate the ADAMS multi-body
dynamics codel, the LS-Dyna nonlinear FE code?, and the Sierra large scale parallel
nonlinear FE code
e All three codes could be used for these benchmarks
* May lead to larger scale, higher fidelity simulations in the future
* Task continuation by modeling and analyzing a much larger sub-assembly problem
applicable to current projects at JPL

1 To be published in near future
2 To be published in near future



