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&Y Theory/Analysis: Different Trilateration Schemes (1)

e Trilateration is the process of determining absolute and relative locations of points
by measurements of distances

* |n this paper, we discuss three trilateration approaches:
 Newton-Raphson Method (absolute positioning)
e Montenbruck’s Scheme (2002) for relative positioning

* New relative positioning scheme introduced in this paper
 The Newton-Rapson Method is the current GPS approach for absolute positioning

e Montenbruck’s scheme was introduced in 2002 that suggests using GPS to perform
relative positioning between two or more spacecraft at LEO

* Very similar, or the same approach was proposed for X-ray navigation — use X-ray
pulsars to estimate the relative position of a spacecraft relative to Earth

* Montenbruck’s scheme has an underlying interferometric approximation in its key
equation, which is valid for interstellar case (X-ray pulsars), but not for GEO distance

 The new scheme uses similar approach as Montenbruck’s, but is an exact solver




Theory/Analysis: Different Trilateration Schemes (2)
Newton-Raphson Method: Current GPS Approach

\/(x_xi)z_l_(y_yi)z_'_(z_zi)z +CAI=dI. - ‘
Sat,
Given sat, and p, fori=1,...n; n=4 . €
i N\ - ’
X 0 . \ /
Initialize | § |=| 0 |and T=0 N : ya
Z 0 \ \ Po ’
. M| /
LS Iterative Scheme: \ .
! N\ ‘. 7
r,=|lsat,—| y || fori=1,..,n; . \ /
z N, ; ya
[ x-xX y-y z-Z | - . \ )
h 7 r v ) A \ /./
G=| : P atrix changes in \
x-% y-F z-% each iteration 1\ ~/ | Convergence is based
oo ho \g’ on the Newton’s Method
p-n+T
Ad = : . AP=(G"G)"'G"Ad
p,-r,+T
X X AP(1)
5 =] 3 AP(2) |and T=T+AP(4) 4
Z Z AP(3)




O Theory/Analysis: Different Trilateration Schemes (3)
¥ Montenbruck’s Scheme: interferometric Approximation

Interferometric
approximation
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Theory/Analysis: Different Trilateration Schemes (4)
New Scheme: Relative Positioning High-Level Concept
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Theory/Analysis: Different Trilateration Schemes (5)
New Scheme: No Clock Bias btw Reference and Target

Direct measurement from 2-way CDMA ranging signals™ (Initialization)
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W Theory/Analysis: Different Trilateration Schemes (6)
@ New Scheme: with Clock Bias btw Reference and Target

Assume from 4 DSN stations (Gold, Madr, Mala, Kour) that we know
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% Theory/Analysis: Major Error Sources in Trilateration (1)

e Raw-range measurement between an anchor (e.g. GPS satellite, ground station)
and a user can include the following error sources:

e Random measurement errors: assume to be zero mean and Gaussian

* Media delays: applicable if signals go through atmosphere (tropospheric delay and
ionospheric delay). For relative positioning analysis, we need to consider both the
common portion and the relative portion

* Anchors’ ephemeris errors: location errors of the infrastructure

* Clock biases relative to the anchors: both reference and target spacecraft can have
different clock biases relative to the anchors

e The trilateration scheme “amplify” the raw-range measurement errors in a manner
somewhat similar to the dilution of precision (DOP) analysis in standard GPS
literatures
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eory/Analysis: Major Error Sources in Trilateration (3)

Properties of AA”
o AATis a symmetric matrix (and positive-definite)
e All eigenvalues are positive
. [AA7]ij is the Cosine of the angle sustained by U; and U;

e Largest and smallest eigenvalue of (AA")*are 1/A,.. and 1/A, ., where A_..and A,
are the smallest and latest eigenvalues of AA”
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* Consider a baseline network of

ground stations at Goldstone,
Madrid, and Marlargue, with
the following visibility

e Simulation Setup:

Coverage map for 36000 km altitude, (+/-) 28.5 degrees latitude band, 10 degrees mask

50

Latitude {degrees)
5 & %

g
e

Octuple 0.0
Nonuple I 0.0
Decuple+ DN 0.0

None 33.
Single 32,
Couble I 27
Triple DN 6.2

* Introduce an error of 0.1 millidegree in directional cosines U,, U,, and U,

* Assume random raw-range measurement errors with Gaussian distribution
with zero mean and standard deviations of 2.5 mm and 5.0 mm respectively

e Assume the raw-range measurements include the same media error o of 10 or
100 meters that is unknown to the users

e Consider the distance between the reference and the target spacecraft A to be

10, 100, or 500 kilometers
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Simulation — Ground Stations Tracking Spacecraft
at GEO: No Clock Bias Case (2

e RMSE at GEO distance (36000 km), random RMS error 2.5 mm

||PH— 10 km ”PH—loo km ”PH—SOO km
o=10m 4.69 cm 8.56 cm 4.90 cm
o=100m 5.63 cm 6.70 cm 5.09 cm

e RMSE at GEO distance (36000 km), random RMS error 5.0 mm

”PH— 10 km ||PH—100 km ”P”—soo km
o=10m 17.86 cm 9.90 cm 9.07 cm
o=100m 981 cm 13.34 cm 13.83 cm
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Simulation — Ground Stations Tracking Spacecraft
at GEO: With Clock Bias Case (1

e Consider a baseline network of ground stations at Goldstone, Madrid, and
Marlargue, and Kourou, and using the same error assumptions as before

e Compare with Montebruck’s Scheme, for RMSE = 2.5 mm

Table 3. RMSE at GEO distance (4 stations), random RMS error = 2.5 mm

|P| =10 km |13||=100 km |P| =500 km
o=10m,A=100m 57.77 cm 70.14 cm 53m
0=100m,A=100m 95.80 cm 49.30 cm 53m
oc=10m, A=1,000m 52.64 cm 61.04 cm 54 m
0=100m, A =1,000 m 62.19 cm 123.68 cm 55m
o=10m, A=10,000 m 53.39 cm 79.62 cm 54 m
o =100 m, A =10,000 m 86.38 cm 94.82 cm 56 m

Table S. RMSE Using Montenbruck’s Scheme, random errors = 2.5 mm

”P” =10 km ”P”=100 km ”P” =500 km
0=10m, A=100 m 16 m 1633 m 41578 m
o=100m,A=100m 17m 1633 m 41661 m
o=10m, A=1,000 m 16 m 1633 m 41599 m
c=100 m, A=1,000 m 17m 1631 m 41559 m
o=10m, A=10,000 m 16 m 1633 m 41602 m
c=100m, A=10,000 m 16 m 1633 m 41628 m




Simulation — Ground Stations Tracking Spacecraft

e Compare with Montebruck’s Scheme, for RMSE = 5.0 mm

at GEO: With Clock Bias Case (2

Unusual error

behavior
Table 4. RMSE at GEO distance (4 stations), random S error/~ 5.0 mm

B 101m _E[F1006m /| [B]f 500 km
o0=10m,A=100m 118.03 cm 97.83 cm 54 m
o=100m,A=100m 149.18 cm 96.22 cm 54 m
o=10m, A=1,000m 121.40 cm 106.63 cm 54 m
o=100 m, A=1,000 m 97.36 cm 111.03 cm 52m
0=10m, A=10,000 m 189.30 cm 114.80 cm 53m
oc=100 m, A=10,000 m 200.00 cm 149.33 cm 54 m

Table 6. RMSE Using Montenbruck’s Scheme, random errors = 5.0 mm

”P”= 10 km |P”=100 km ”P| =500 km
oc=10m,A=100 m 16 m 1632 m 41619 m
o=100m,A=100m 17 m 1633 m 41629 m
6=10m, A=1,000m 17 m 1633 m 41654 m
o=100m,A = 1,000 m 18 m 1635 m 41688 m
o=10m, A= 10,000 m 15 m 1631 m 41702 m
=100 m, A = 10,000 m 17 m 1632 m 41628 m




Concluding Remarks

* In this paper, we introduce a trilateration scheme that evaluates the 3-D
relative position between a reference spacecraft and a target spacecratft
using Pythagoras’ Theorem instead of the GPS’s Newton’s Method

 We consider at GEO distance the cases when a) the clocks on the reference
spacecraft and the target spacecraft are perfectly synchronized, and b) there
IS a clock bias between the reference spacecraft and target spacecratft

 We demonstrate that under reasonable conservative error assumptions the
algorithms converge to centimeter-level accuracy in the case of no clock
bias, and meter-level accuracy in the presence of clock bias

* Note that we do not assume the use of any advanced GPS measurement
techniques, signal-processing algorithms, and location-specific
meteorological measurements. We believe that if we were to implement this
scheme using the current state-of-the-art GPS capabillities, we could achieve
a considerably better accuracy performance than what we show in this paper



Latest Results and Ongoing Work

e This paper assumes fixed atmospheric delays. But we found that accuracy can be
sensitive to tropospheric and ionospheric delay differentials between the reference
and target spacecraft, with additional accuracy degradation of a few centimeters

* Instead of using ground stations as “anchors”, one can use the side-lobes of GPS
signals on the opposite side of Earth to perform better relative positioning for a
constellation of spacecraft at GEO; analogous to MMS tracking of weak GPS signals

e Using similar problem formulation, we found that the same scheme can be used for
GPS positioning. The accuracy performance is indistinguishable compared to the
traditional GPS Newton-Raphson method, but much less computationally intensive

 We investigated the scenario of using GPS satellites “looking downward” to
perform real-time relative positioning between two moving vehicles on or in the
vicinity of the Earth’s surface, without the need of a reference station, and achieve
decimeter-level accuracy for distance of 100 m

* Enable applications like formation flying and collision avoidance for high-density and
dynamic applications (e.g. Uber’s Elevate)
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