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and their associated flood and hazard risks
occur and influence
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Over at midlatitudes is by ARs that take up only
(Zhu and Newell 1998).

In the west, ARs
account for ~40% of
annual precipitation

and most floods.




(a) AR Frequency and IVT
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Motivation for this study:

There Is a need for rigorous assessment of
AR on timescales to
Improve model development, weather forecasting,
and water resources management.




Global AR Detection

AR Date, Transports, Shape, Axis, Landfall Location, etc.

Over ~ in detected
AR landfall dates compared to 3
independent studies in western US,
Britain, and East Antarctica (Neiman
et al. 2008; Lavers et al. 2011,
Gorodetskaya et al. 2014)
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Applications:
Global characterization

GCM evaluation
Forecast assessment
Climate change

Based on ERA-Interim 6-hourly IVT Guan and Waliser 2015
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AR frequency anomalies are sensitive to tropical variability on
timescales...

Northern Hemisphere

Madden-Julian
Oscillation (MJO)

Guan and Waliser (2015)
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... and timescales.

(a) La Nina AR Frequency Anomalies

La Nifia

anomaly EQ
208
408

60S
80S

J0E 60E 90E 120E 150E 180 150W 120W 90W 60W 30W 0 30E El Niﬁo Southern
(b) El Nino AR Frequency Anomalies OSCI”&'[IOI’] (ENSO)

El Nifio
anomaly
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The . our toolbox for assessing global
AR prediction skill and predictability

° Surte Of real_time forecasts and The S2S Database: ajint CRP-WRP Project
several decades of e AT il
from 11 operational forecast
models

e Maximum ranging from

D0-46  T639/319L91 2lweek Onthefly  Past 20y 2jweekly
D 0-60 N2 16L85 s aily On the fly 1996-2009  4/mont

° HindcaSt ensemble Size ranging D 0-44 NI26L64 4 4/daily Fix 1999-2010
fro m 1 to 33 D0-32 0.6x0.6L40 2 weekly Onthefly 1995-2014 weekly

D 0-60 T47L17 weekly Fix 1981-2013  6/mond

[ Varlety Of forecastlng DO0-3¢  T3I5L60 2 Uweekly Fix 19812010 3/mont
configurations and other mode! R

param ete IS ( D032 T255L91 Weekly Fi :
am O n g St m Od e I S) D032 0.75x0.56 L54 weekly Fix 1981-2010  6/mond

- “dataset of opportunity”

1993-2014  2/monthly




(~Atmospheric River Skill) Global Algorithm

First, Guan and Waliser [
2015 detection .
algorithm applied to
observations and each | &
ensemble member

Then, :
algorithm quantifies &
contingency table .
values (i, misses, x
, correct
rejections) as a function |

of N ilOOOkm” AR hit threshold
S2S Project Hindcasts -

ECMWF (1996-2013)

DeFlorio, Waliser, Guan et al. (2016, in prep)

Observations - ERA-Interim



AR objects, 4 Jan 1996

(Aimospheric Hiver
) Global Algorithm

e red orbs show all grid cells

centroid G ri dpoi]nts with in 1 oookr: (re d)
e Wwe assess prediction skill using = e BT
AR hitand rates

relative to each observed and
modeled AR object




How does AR prediction skill vary as a function of
and hit ?




Seasonal Variability
ECMWF 1996—-2013 prediction skill, 1wk lead (1000km thresh)
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Global AR Prediction Skill

Sensitivity To Distance Threshold

ECMWEF 1996—-2013 DJF prediction skill, 1wk lead
1000km (620 mile) threshold
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DeFlorio, Waliser, Guan et al. (2016, in prep)




How does AR prediction skill vary as a function of
?




AR prediction skill, N. Pac. (140E-230E, 30N-60N)

Global AR Prediction Skill

« Skill generally saturates

around
e Larger see}gonal variability in DM
North Pacific Lead (days)

AR prediction skill, S. Pac. (140E-230E, 30S-60S)

e Key question: Can we exploit
higher skill

?

0 4 8 12 18
Lead (days)

DeFlorio, Waliser, Guan et al. (2016, in prep)



Potentially, since prediction skill varies considerably on

subseasonal timescales.
ECMWEF 1996-1999 North Pacific AR prediction skill
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Utility of AR Prediction
Skill: ROC approach

* Prediction skill utility

on

DeFlorio, Waliser, Guan et al. (2016, in prep)

ROC curves: DJF 1996-2013 ECMWEF AR prediction skill
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. Area under ROC curve, ECMWF DJF 1996-2013 AR prediction skill
Area under ROC curve: Tl _ e load

measure of forecast utility

0.9

« 0.5 = little gain over a
random forecast e |5

o 1 = perfect forecast R 00 0 8 &0 0 30 %0

* In prep:
ROC curves and
maps

DeFlorio, Waliser, Guan et al. (2016, in prep)
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Summary and conclusions

Atmospheric rivers are phenomena that shape the Earth’s climate, water
and energy cycles, as well as account for regional weather and water extremes.

We’'ve developed a detection algorithm (Guan and Waliser 2015) that can be
_ _ ( used on global “observations” (i.e. re-analyses),
climate simulations and forecast models.

Our new : provides a ] _ for
caI%uIIatlng contingency table values for AR events in operational forecast
models.

. provides the first global assessment of AR prediction skill to date

There is considerable utility in regional (order ~1000km) forecasts of prediction
skill at 7-10 day lead time.

» generally higher prediction skill at relative to MAM

* There is considerable _ \ of prediction skill, which suggests
potential for conditioning AR skill estimates on various climate states.

» We are currently expanding methodology to utilize
, and to estimate




Thanks!

Michael.deflorio@jpl.nasa.gov

Mars Science
Laboratory
Project (MSL)
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